This paper deals with the robustness properties of the minimum disparity estimation in linear regression models. The estimators defined as statistical quantities whcih minimize the blended weight Hellinger distance between a weighted kernel density estimator of the residuals and a smoothed model density of the residuals. It is shown that if the weights of the density estimator are appropriately chosen, the estimates of the regression parameters are robust.
The adoption of cladding panels as dissipation device is a sort of passive control "ante litteram" for residential and commercial buildings. This paper gives details on the current technology outlining the difference between buffer panels and cladding panels. The discussion of robustness and resilience of the resulting system is afforded. It is shown that the strength of such solution, originally related to economy and light weight, is mainly associated with the respect of the main robustness requisites, as well as the short time it requires for removal and replacement (resilience).
이 논문에서는 델타함수와 상호 정보 에너지(cross information-potential with the delta functions, CIPD)에 기반한 블라인드 등화 알고리즘의 최적 가중치를 유도하고 충격성 잡음에 대해 가지는 강인성에 대해 분석하였다. CIPD 알고리즘의 입력에 대한 크기조절 기능이 정상상태 가중치를 충격성 잡음으로부터 안정되게 유지하는 주된 역할을 하는 것으로 분석되었으며 시뮬레이션 결과를 통하여, CIPD 알고리즘의 정상상태 가중치는 MSE 성능기준의 최적해를 가지면서도, 충격성 잡음에서 MSE에 기반한 LMS 알고리즘과 달리, 안정된 값을 유지함을 보였다.
음악 검색을 서비스하기 위해서는 핑거프린트 정합 정확도가 중요하다. 본 논문에서는 파워 가중치를 이용하여 오디오 핑거프린트 정합 성능을 제고하고자 한다. 파워 가중치는 핑거프린트 비트 추출 과정에서 유실되는 정보를 이용하여 구한 핑거프린트 비트의 예측 강인도이다. 기존 파워 마스크 방법은 저장 공간을 줄이기 위해서 이진화를 통해서 강인한 비트와 연약한 비트로 나눈다. 본 논문에서는 정합 성능을 향상시키기 위해서 실수 값 형태의 파워 가중치를 사용하는 방법을 제안한다. 또한 시간축 방향으로 연관성이 강한 파워 가중치의 특성을 이용하여 압축하여 저장공간을 줄일 수 있도록 한다. 공개된 음악 데이터셋에서 실험을 수행하여, 제안된 파워 웨이트가 오디오 핑거프린트 정합성능을 제고함을 확인하였다.
In product design and manufacturing, axiomatic design provides a systematic approach for the decision-making process. Two axioms have been defined such as the Independence Axiom and the Information Axiom. The Information Axiom states that the best design among those that satisfy the independence axiom is the one with the least information content. In other words, the best design is the one that has the highest probability of success. On the other hand, the Taguchi robust design is used in the two-step process; one is "reduce variability," and the other is "adjust the mean on the target." The two-step can be interpreted as a problem that has two FRs (functional requirements). Therefore, the Taguchi method should be used based on the satisfaction of the Independence Axiom. Common aspects exist between the Taguchi method and Axiomatic Design in that a robust design is induced. However, different characteristics are found as well. The Taguchi method does not have the design range, and the probability of success may not be enough to express robustness. Our purpose is to find the one that has the highest probability of success and the smallest variation. A new index is proposed to satisfy these conditions. The index is defined by multiplication of the robustness weight function and the probability density function. The robustness weight function has the maximum at the target value and zero at the boundary of the design range. The validity of the index is proved through various examples.gh various examples.
This paper proposes a tabu search (TS) algorithm to optimal weight selection in design of robust H$_{\infty}$ power system stabilize. (PSS), In H$_{\infty}$ control design, the weight selection and the representation of system uncertainties are the major difficulties. To cope with these problems, TS is employed to automatically search for the optimal weights. On the other hand, the normalized coprime factorization (NCF) is used. The H$_{\infty}$ controller can be directly developed without ${\gamma}$-iteration. Also, the pole-zero cancellation phenomena are prevented. The performance and robustness of the proposed PSS under different loading conditions are investigated in comparison with a robust tuned PSS by examining the case of a single machine infinite bus (SMIB) system. The simulation results illustrate the effectiveness and robustness of the proposed PSS.
International Journal of Fuzzy Logic and Intelligent Systems
/
제16권2호
/
pp.81-86
/
2016
Term weighting is a popular technique that effectively weighs the term features to improve accuracy in document classification. While several successful term weighting algorithms have been suggested, none of them appears to perform well consistently across different data domains. In this paper we propose several reasonable methods to combine different term weight vectors to yield a robust document classifier that performs consistently well on diverse datasets. Specifically we suggest two approaches: i) learning a single weight vector that lies in a convex hull of the base vectors while minimizing the class prediction loss, and ii) a mini-max classifier that aims for robustness of the individual weight vectors by minimizing the loss of the worst-performing strategy among the base vectors. We provide efficient solution methods for these optimization problems. The effectiveness and robustness of the proposed approaches are demonstrated on several benchmark document datasets, significantly outperforming the existing term weighting methods.
An active research area in computer vision, stereo matching is aimed at obtaining three-dimensional (3D) information from a stereo image pair captured by a stereo camera. To extract accurate 3D information, a number of studies have examined stereo matching algorithms that employ adaptive support weight. Among them, the adaptive census transform (ACT) algorithm has yielded a relatively strong matching capability. The drawbacks of the ACT, however, are that it produces low matching accuracy at the border of an object and is vulnerable to noise. To mitigate these drawbacks, this paper proposes and analyzes the features of an improved stereo matching algorithm that not only enhances matching accuracy but also is also robust to noise. The proposed algorithm, based on the ACT, adopts the truncated absolute difference and the multiple sparse windows method. The experimental results show that compared to the ACT, the proposed algorithm reduces the average error rate of depth maps on Middlebury dataset images by as much as 2% and that is has a strong robustness to noise.
Communications for Statistical Applications and Methods
/
제11권1호
/
pp.153-160
/
2004
In recent years, the size of data set which we usually handle is enormous, so a lot of outliers could be included in data set. Therefore the robust procedures that automatically handle outliers become very importance issue. We consider the robust estimation problem of location parameter in the univariate case. In this paper, we propose a new method for defining robustness weights for the weighted mean based on the median distance of observations and compare its performance with several existing robust estimators by a simulation study. It turns out that the proposed method is very competitive.
In this paper, the robustness of the artificial neural networks to noise is demonstrated with a multilayer perceptron, and the reason of robustness is due to the statistical orthogonality among hidden nodes and its hierarchical information extraction capability. Also, the misclassification probability of a well-trained multilayer perceptron is derived without any linear approximations when the inputs are contaminated with random noises. The misclassification probability for a noisy pattern is shown to be a function of the input pattern, noise variances, the weight matrices, and the nonlinear transformations. The result is verified with a handwritten digit recognition problem, which shows better result than that using linear approximations.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.