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Abstract

Term weighting is a popular technique that effectively weighs the term features to improve
accuracy in document classification. While several successful term weighting algorithms
have been suggested, none of them appears to perform well consistently across different data
domains. In this paper we propose several reasonable methods to combine different term
weight vectors to yield a robust document classifier that performs consistently well on diverse
datasets. Specifically we suggest two approaches: i) learning a single weight vector that lies in
a convex hull of the base vectors while minimizing the class prediction loss, and ii) a mini-max
classifier that aims for robustness of the individual weight vectors by minimizing the loss of
the worst-performing strategy among the base vectors. We provide efficient solution methods
for these optimization problems. The effectiveness and robustness of the proposed approaches
are demonstrated on several benchmark document datasets, significantly outperforming the
existing term weighting methods.
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1. Introduction

Increased availability of a large volume of documents data generated from social networking,
Internet blogs, and news articles among others, naturally demands automatic and accurate
tagging programs that unburden the human efforts to read huge amount of data. In turn, the
document classification emerges rapidly, and now is recognized as one of the most important
problems in machine learning and artificial intelligence recently. Popular applications include:
sentiment analysis [1], email filtering [2, 3], news article clusterings [4, 5], to name just a few.
The first step in text classification is how to represent a document, comprised of several
sentences/paragraphs each of which is a sequence of a varying number of words. One of
the most successful representations is the bag-of-words (BoW), a vector defined to be of the
vocabulary size V (i.e., the number of all distinct words considered), where the i-th entry
has the counts of the term i in the document. Thus it is often called the term-frequency (tf)
representation of a document. While the tf representation ignores the spatial information
of the words (i.e., words ordering in sentences/paragraphs), it contains valuable statistical
information about the document, namely which terms are used and which are not in the
document, and how often certain terms occur in a document.

81 |

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/


http://dx.doi.org/10.5391/IJFIS.2016.16.2.81

While one can use tf vectors directly in classifier training,
it is often more effective to weigh individual terms differently.
The motivation is that some terms are more important and
salient than others with regard to distinguishing documents by
topics or contents. For instance, word counts of certain stop
words (e.g., articles a or the) are apparently considered as noise
having little impacts on document classification. The most
popular but traditional term weighting scheme is the so-called
inverse document frequencies (idf), where each term frequency
is weighted by the idf which is a reciprocal of the number of
training documents that contain the term. Intuitively, idf values
tend to be high for those terms that occur exclusively in a small
number of documents (more likely keywords), while ubiquitous
terms like stop words would get low weights.

Beyond the success of tf-idf, recently several supervised term
weighting schemes have been proposed where the idea is to
exploit the class labels in learning the weight vector. The tf-
idf is clearly an unsupervised approach for its ignorance of
class labels at all, and often outperformed by the supervised
methods. These methods typically use certain information-
theoretic statistics such as χ2 metric, information gain, and
odds ratio [6, 7]. More recently the tf-rf strategy [8] aimed to
weigh each term frequency by the so-called relevance frequency
(rf), the ratio between the numbers of positive and negative
documents that contain the term. Terms with rf values highly
distant from 1 can thus be considered as more discriminative
indicators for classification.

Given that we have a handful of existing term weighting
algorithms, the question is which one is the best. It seems like
that there is no single best scheme that outperforms the rest
across all problems/datasets. Rather, one strategy performs well
on some specific cases while fails severely in other situations,
meaning that individual weight vectors may have their own best
working regimes. This issue of deficiency in robustness origi-
nates from using a single term weighting strategy. Motivated
by this, in this paper we propose several reasonable methods to
combine multiple different term weight vectors to yield a robust
document classifier that performs well broadly across different
types of datasets. We denote the existing term weighting vectors
(listed and summarized in Sec. 2) by base weight vectors.

We suggest two approaches of combining base vectors: i)
Learning a single term weight vector that is a mixture of the
base vectors. Basically we enforce the target weight vector to
minimize the class prediction loss, while the target vector is
confined to lie in a convex hull of the base vectors. ii) Learning
a worst-case robust classifier that minimizes the loss of the

worst-performing base weight vector. This method does not
find a single term weight vector, but a classifier that takes into
account all base vectors as input and tries to reduce the worst-
case prediction error.

Specifically, we consider the linear support vector machine
(SVM) as an underlying classifier, and formulate optimization
problems in principled manners. Among other classifiers, the
SVM’s maximization of the data margins in the class decision
boundary results in theoretical performance guarantee, also
practically superb prediction accuracy [9]. Interestingly in the
second approach, the proposed mini-max optimization problem
becomes an instance of convex optimization. We demonstrate
the effectiveness and robustness of the proposed approaches for
several benchmark document datasets.

1.1 Notations and Problem Setup

We deal with the supervised learning setup where we have n
training samples of document-class pairs, D = {(di, yi)}ni=1.
We assume binary classification (i.e., y ∈ {+1,−1}) where
multi-class problems can be converted to binary straightfor-
wardly via standard treatments (e.g., one-vs-others in [10]).
The vocabulary is defined to be a set of all terms (or words) in
the training corpus V = {tk}Vk=1 where we let V be the size of
the vocabulary.

In the tf representation of a document d, denoted by a V -
dim vector tf(d) = [tf1, tf2, . . . , tfV ]

>, where tfk contains
word counts of the term tk in d. Instead of using tf(d) directly
as a feature vector for d in classification, the term weighting
methods construct a feature vector x by multiplying tf values
by the term weights, namely

x(d) = tf(d)⊗ b, (⊗: element-wise product), (1)

where b = [b1, b2, . . . , bV ] ∈ RV is the base term weight
vector. Several schemes of defining b have been introduced thus
far, and we briefly summarize them in the following section.

2. Existing Term Weighting Schemes

In the term weighting schemes the importance of each term is
judged and quantified, typically using statistics about the term
in the training documents. It is convenient to define specific
schemes using the (2×2) contingency tables, one for each term
ti. Specifically, we let p1i be the number of positive documents
in the training set that contain the term ti, and n0i be the number
of negative training documents where ti is absent. Similarly, we
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define p0i and n1i . Clearly, the numbers of positive and negative
documents are: n+ = p1i + p0i , n− = n1i + n0i for all i (and
n = n+ + n−). We list the popular base weight vectors below
with a brief comment or two.

• idf: Inverse document frequency; bi = log( n
p1i+n

1
i
), which

is an unsupervised scheme.

• chi2: The χ2-statistics based term weighting;

bi =
n(p1in

0
i − p0in1i )2

n+n−(p1i + n1i )(p
0
i + n0i )

,

which is a supervised scheme.

• ig: The information-gain term weighting;

bi =
p1i
n

log(
(n/n+)p

1
i

p1i + n1i
) +

p0i
n

log(
(n/n+)p

0
i

p0i + n0i
)

+
n1i
n

log(
(n/n−)n

1
i

p1i + n1i
) +

n0i
n

log(
(n/n−)n

0
i

p0i + n0i
),

which is a supervised scheme.

• rf: The relevance frequency term weighting; bi = log(2+
p1i
n1
i
), which considers the ratio between the numbers of

positive and negative documents that contain the term.

• or: The odds-ratio term weighting; bi =
p1in

0
i

p0in
1
i

, which is
similar to rf, but also takes into account absence of the
term.

3. Combining Base Term Weight Vectors

From the previous section, we denote by b(j) the j-th base term
weight vectors (j = 1, 2, . . . , J); for instance, b(1) is the idf,
b(2) is the chi2, and so on. In what follows we suggest two
reasonable and robust methods of combining base vectors.

3.1 Learning a Single Weight Vector

The key idea is to find the single term weight vector that is
not distant from every base vector while achieving the smallest
classification error. To impose similarity between the target
term weight vector and base vectors, we specifically consider
to constrain the target vector to lie in the convex hull of the
base vectors. Denoting the target vector to be learned as b, we
impose b =

∑J
j=1 αjb

(j) where
∑J
j=1 αj = 1 and αj ≥ 0.

This can be seen as a mixture of base vectors, and essentially

parametrizes b by mixing parameters αj’s. Then we solve:

min
{αj},w

n∑
i=1

l(xi, yi;b,w) + C||w||2 (2)

s.t. b =

J∑
j=1

αjb
(j),

J∑
j=1

αj = 1, αj ≥ 0,

where C is the non-negative constant that regularizes a non-
smooth classifier. Here we incorporate the SVM’s hinge loss,
l(x, y;b,w) = (1−yw>(b⊗x))+, where (z)+ = max(z, 0).

While the optimization (2) is non-convex jointly in the mixing
variables {αj} and the classifier parameters w, it becomes
convex for each set when fixing the other as constant. Hence
we solve (2) by a (block) coordinate-wise minimization fashion,
meaning that we alternate (until convergence) two steps: i)
fixing w and solve the convex minimization over {αj}, and
ii) fixing {αj} and solve the SVM problem for w using the
features b =

∑J
j=1 αjb

(j). The final solution w and b can be
used at test time directly, that is, y = sgn(w>(b⊗ x)).

3.2 Mini-Max Robust Classifier Learning

The approach in the previous section takes into account all the
base vectors in learning the final term weight vector. This can
be intuitively appealing, but it can still be less robust since
the final model is comprised of a single vector, which can be
potentially sensitive to specifics of particular problems/datasets
and prone to overfit.

To be more robust and improve generalization performance,
we consider to learn a classifier (instead of learning a single
fixed weight vector) that can be applied to all different base
vectors. When training the classifier, we deal with the worst-
performing base vector for each instance, and try to reduce its
worst-case loss function. At test time, however, we take the
majority vote over predictions from different base vectors. This
strategy can be beneficial for not only increasing robustness (by
worst-case treatment over the base vectors), but also improving
the generalization performance (by voting over different term
weighting schemes). Our idea can be formulated as a mini-max
optimization:

min
w

n∑
i=1

[
max
1≤j≤J

l(xi, yi;b
(j),w)

]
+ C||w||2. (3)

Interestingly, (3) is an instance of convex optimization, since
the summand in the objective can be written as: (maxj(1 −
yiw

>(b(j) ⊗ xi)))+, which is point-wise maximum of the
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affine functions. However, due to the non-differentiability of the
objective function (from the max function), we use the subgradi-
ent descent method [11], namely, w← w−η(2Cw+

∑
i ∂li),

where η > 0 is the learning rate, and ∂li is the subgradient of
max1≤j≤J l(xi, yi;b

(j),w):

∂li =

{
−yi(b(j∗(i)) ⊗ xi) if pi(w) < 1

0 if pi(w) ≥ 1
(4)

where pi(w) = yiw
>(b(j∗(i)) ⊗ xi) and j∗(i) = argminj yi

w>(b(j) ⊗ xi). Once the optimal classifier w is found, at test
time the class label is determined by majority vote over predic-
tions using the J base weight vectors, that is, y = majority-votej
(sgn(w>(b(j) ⊗ x))).

4. Experiments

We evaluate the prediction performance of the proposed ap-
proaches on several benchmark document classification datasets.
The details and the experimental setups about the datasets are
described in Sec. 4.1. As mentioned, we train a linear SVM clas-
sifier for a given feature weighting vector (either a base vector or
our mixed term weight vector estimated from Sec. 3.1). For the
mini-max classifier learning (Sec. 3.2), we directly solve the op-
timization (3). The hyperparameter (i.e., the loss-regularization
trade-off parameter C) is chosen by cross validation on a held-
out portion of the training set. We list below the competing
approaches (with abbreviations) described in the previous sec-
tions.

• xxx: Here xxx indicates one of the five base weight vec-
tors discussed in Sec. 2 (idf, chi2, ig, rf, and or).

• mix-ch: Our convex-hull mixture of the five base vec-
tors as described in Sec. 3.1. We repeat alternating the
block coordinate descent steps until convergence (e.g.,
the norm of the relative changes in the consecutive iter-
ates becomes smaller than 10−4).

• mini-max: Our mini-max robust classifier in Sec. 3.2. In
the subgradient update step, we use the diminishing step
size (e.g., ηk = 1/k at the k-th iteration).

4.1 Datasets

The competing approaches are tested and contrasted on three
benchmark datasets in text classification: Reuters-21578, We-
bKB, and 20 newsgroup. We pre-process the data using the

famous Porter’s Stemmer algorithm [12] for term stemming
which essentially removes derived words from a stem word
(e.g., fishing, fisher, and fished replaced by the same root word
fish). Details and experimental setups for each dataset are de-
scribed in the following.

4.1.1 Reuters

The dataset11 consists of documents on the Reuters newswire
in 1987, and among several variants we use the R8 dataset
comprised of documents from 8 classes including crude, earn,
ship, and so on. Overall there are about 7,000 instances where
the corpus has approximately 16,000 distinct terms. We split
the data randomly into 50%/50% training/test sets, and this is
repeated for 10 random runs to report the average performance.
Each multi-class problem is transformed into 8 different binary
classification problems by the one-vs-others treatment.

4.1.2 WebKB

The dataset22 is collected by the world-wide knowledge base
project of the CMU text learning group, containing approxi-
mately 4,000 web pages from various universities in US. The
web pages are manually labeled as one of the four topcis
(classes): student, faculty, course, and project. The vocabu-
lary size is about 8,000. We use the similar training/test set split
protocol as the Reuters set.

4.1.3 20 Newsgroups

This large-scale dataset33 consists of about 20,000 newsgroup
documents annotated as 20 different subject categories. Some
class categories are hierarchically related, for instance, the sci-
ence class has crypt and electronics as its children. This intro-
duces some degree of ambiguity, which in turn can make accu-
rate prediction more difficult. However, some other categories
are inherently unrelated from others (e.g., guns under politics).
The whole dataset has about 18,000 documents where we ran-
domly partition them into training/test sets with equal numbers.
Again the 20-way classification problems are converted into
20 binary problems by the one-vs-others transformation. The
corpus is comprised of about 70,000 unique terms after term
stemming.

11 http://www.daviddlewis.com/resources/testcollections/reuters21578/.
22 http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/.
33 http:// people.csail.mit.edu/jrennie/20Newsgroups/.
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Table 1. Test prediction F-scores on the Reuters dataset

Methods Micro F-score Macro F-score

idf 0.7942± 0.0054 0.7950± 0.0050

chi2 0.8346± 0.0055 0.8349± 0.0054

or 0.8198± 0.0061 0.8207± 0.0064

ig 0.8328± 0.0046 0.8333± 0.0044

rf 0.8453± 0.0073 0.8460± 0.0071

mix-ch 0.9132± 0.0050 0.9090± 0.0077

mini-max 0.9087± 0.0076 0.9136± 0.0052

4.2 Results

As a performance measure for the competing classifiers, we use
the F -score, a standard metric for information retrieval tasks.
The accuracy (i.e., the proportion of the correctly predicted
instances) alone is not sufficient due to potentially high imbal-
ance in the amount of positive and negative documents, and one
should deal with both precision and recall scores. In the binary
classification, the precision (p) is defined as the proportion of
the true positives (TP ) out of the predicted positives (PP ), i.e.,
p = TP

PP , while the recall (r) is defined as r = TP
WP where WP

is the number of whole positive documents in the test set. Then
one defines F -score as 2pr

p+r .
Since the datasets we test with have all multi-class setups

which have been binarized via one-vs-others transformation,
one needs a way to combine F-score measures for individual
problems. We basically follow the averaged F-scores intro-
duced in [8], specifically: i) micro-averaged F -score defined as
2PR
P+R where P =

∑
c TP (c)∑
c PP (c) and R =

∑
c TP (c)∑
cWP (c) with TP (c),

PP(c), and RP (c) from the c-th binary problem, and ii) macro-
averaged F defined to be 2P ′R′

P ′+R′ P
′ = (1/K)

∑
c p(c) and

R′ = (1/K)
∑
c r(c) where p(c) and r(c) are the precision

and the recall for the c-th problem.
The prediction results are summarized in Table 1–3. We

depict the F-scores averaged over 10 random folds with standard
deviations. The proposed methods consistently outperform
the base term weighting schemes. Also, it turns out that the
individual base term weight vectors alone exhibit less robust
prediction: some schemes perform well on one dataset while
being inferior to others in other datasets. For instance, the rf
scheme performs best among other base vectors on the Reuters
dataset, while worse on the WebKB. The proposed algorithms
of combining base weighting vectors can yield consistently
superior prediction performance across different datasets.

Table 2. Test prediction F-scores on the WebKB dataset

Methods Micro F-score Macro F-score

idf 0.8129± 0.0101 0.8132± 0.0116

chi2 0.8984± 0.0033 0.8989± 0.0071

or 0.8512± 0.0050 0.8520± 0.0073

ig 0.8982± 0.0029 0.8990± 0.0070

rf 0.8629± 0.0033 0.8617± 0.0023

mix-ch 0.9012± 0.0035 0.9046± 0.0011

mini-max 0.9190± 0.0040 0.9219± 0.0046

Table 3. Test prediction F-scores on the 20-Newsgroup.

Methods Micro F-score Macro F-score

idf 0.5575± 0.0063 0.5582± 0.0055

chi2 0.5732± 0.0037 0.5743± 0.0036

or 0.5928± 0.0059 0.5932± 0.0054

ig 0.5524± 0.0216 0.5685± 0.0095

rf 0.5958± 0.0058 0.5961± 0.0053

mix-ch 0.6613± 0.0005 0.6595± 0.0025

mini-max 0.6742± 0.0004 0.6622± 0.0009

5. Conclusion

We have proposed two robust approaches to combining base
term weight vectors that yield superior document classifica-
tion performance consistently across diverse datasets. The
first method finds the best mixing of the base vectors to mini-
mize the overall classification errors, while the second one, the
mini-max classifier, aims at improving the performance of the
worst-performing base weighting vector to yield a more robust
predictor. On several benchmark text datasets, our approaches
exhibit robustness and consistently superior performance to the
existing term weighting methods.
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