• Title/Summary/Keyword: Robust tracking

Search Result 996, Processing Time 0.032 seconds

Design of DNP Controller for Robust Control of Auto-Equipment Systems (자동화 설비시스템의 강인제어를 위한 DNP 제어기 설계)

  • ;趙賢燮
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.2
    • /
    • pp.187-187
    • /
    • 1999
  • in order to perform a elaborate task like as assembly, manufacturing and so forth of components, tracking control on the trajectory of power coming in contact with a target as well as tracking control on the movement course trajectory of end-effector is indispensable. In this paper, to bring under robust and accurate control of auto-equipment systems which disturbance, parameter alteration of system, uncertainty and so forth exist, neural network controller called dynamic neural processor(DNP) is designed. Also, the learning architecture to compute inverse kinematic coordinates transformations in the manipulator of auto-equipment system is developed and the example that DNP can be used is explained. The architecture and learning algorithm of the proposed dynamic neural network, the DNP, are described and computer simulation are provided to demonstrate the effectiveness of the proposed learning method using the DNP.

Robust Tracking of Constrained Uncertain Linear Systems using a High-gain Disturbance Observer (고이득 외란 관측기에 기반한 입력 제약 조건이 있는 불확실한 선형 시스템의 강인 추종 제어)

  • Yoon, Mun Chae;Kim, Jung-Su;Back, Juhoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.6
    • /
    • pp.397-402
    • /
    • 2016
  • This paper proposes a robust tracking control for constrained uncertain linear systems by combining a disturbance observer (DOB) and linear matrix inequality (LMI) based state feedback control. To this end, the state feedback control is designed for the nominal system and then a DOB based feed-forward control is added to reject uncertainties. In doing so, the DOB and state feedback controller are joined in a way that the combined control satisfies the input constraints and closed loop stability is guaranteed. Simulation results are provided to show that the proposed control scheme successfully stabilizes uncertain systems.

Robust Tracking Control of a Flexible Joint Robot System using a CMAC Neural Network Disturbance Observer (CMAC 신경망 외란관측기를 이용한 유연관절 로봇의 강인 추적제어)

  • 김은태
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.5
    • /
    • pp.299-307
    • /
    • 2003
  • The local structure of CMAC neural networks (NN) results in better and faster controllers for nonlinear dynamical systems. In this paper, we propose a CMAC NN-based disturbance observer and its corresponding controller for a flexible joint robot. The CMAC NN-based disturbance observer compensates for the parametric uncertainties and the external disturbances throughout the entire mechanical system. Finally, a simulation result is given to demonstrate the effectiveness of proposed design method's robust tracking performance.

Robust tracking control for uncertain linear systems using linear matrix inequlities (선형행렬 부등식을 이용한 불확실한 선형시스템에 대한 강인 추적제어기)

  • Lee, Jae-Won;Kwon, Wook-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.3
    • /
    • pp.289-294
    • /
    • 1998
  • 본 논문에서는 상태행렬과 입력행렬에 시변 불확실성이 있는 선형시스템에 대한 강인 추적 제어기를 제안한다. 본 논문에서 대상으로 하는 불확실성은 block-diagonally structured uncertainty와 norm bounded uncertainty인데 모두 정합 조건을 만족시킬 필요는 없다. 폐루프 시스템이 불확실성하에서 안정할 수 있는 조건을 제시하고 이 조건이 선형행렬 부등식으로 나타낼 수 있음을 보인다. 추적 오차를 줄이고 오차 감소 비율을 증가시킬 수 있는 최적화 방법도 제아한다. 또한 불확실성의 크기가 0으로 줄어들면 추적 오차도 0으로 줄어듬을 보인다.

  • PDF

Dynamic control of mobile robots using a robust.adaptive learning control method (강인.적응학습제어 방식에 의한 이동로봇의 동력학 제어)

  • Nam, Jae-Ho;Baek, Seung-Min;Guk, Tae-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.2
    • /
    • pp.178-186
    • /
    • 1998
  • In this paper, a robust.adaptive learning control scheme is presented for precise trajectory tracking of rigid mobile robots. In the proposed controller, a set of desired trajectories is defined and used in constructing the control input and learning rules which constitute the main part of the proposed controller. Stable operating characteristics such as precise trajectory tracking, parameter estimation, disturbance suppression, etc., are shown thorugh experiments and computer simulations.

  • PDF

Implementation of a Robust Fuzzy Adaptive Speed Tracking Control System for Permanent Magnet Synchronous Motors

  • Jung, Jin-Woo;Choi, Han Ho;Lee, Dong-Myung
    • Journal of Power Electronics
    • /
    • v.12 no.6
    • /
    • pp.904-911
    • /
    • 2012
  • This paper presents a fuzzy adaptive speed controller that guarantees a fast dynamic behavior and a precise trajectory tracking capability for surfaced-mounted permanent magnet synchronous motors (SPMSMs). The proposed fuzzy adaptive control strategy is simple and easy to implement. In addition, the proposed speed controller is very robust to system parameter and load torque variations because it does not require any accurate parameter values. The global stability of the proposed control system is analytically verified. To evaluate the proposed fuzzy adaptive speed controller, both simulation and experimental results are shown under motor parameter and load torque variations on a prototype SPMSM drive system.

High-Accuracy Motion Control of Linear Synchronous Motor Using Reinforcement Learning (강화학습에 의한 선형동기 모터의 고정밀 제어)

  • Jeong, Seong-Hyen;Park, Jung-Il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.12
    • /
    • pp.1379-1387
    • /
    • 2011
  • A PID-feedforward controller and Robust Internal-loop Compensator (RIC) based on reinforcement learning using random variable sequences are provided to auto-tune parameters for each controller in the high-precision position control of PMLSM (Permanent Magnet Linear Synchronous Motor). Experiments prove the well-tuned controller could be reduced up to one-fifth level of tracking errors before learning by reinforcement learning. The RIC compared to the PID-feedforward controller showed approximately twice the performance in reducing tracking error and disturbance rejection.

Study on a Robust Object Tracking Algorithm Based on Improved SURF Method with CamShift

  • Ahn, Hyochang;Shin, In-Kyoung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.1
    • /
    • pp.41-48
    • /
    • 2018
  • Recently, surveillance systems are widely used, and one of the key technologies in this surveillance system is to recognize and track objects. In order to track a moving object robustly and efficiently in a complex environment, it is necessary to extract the feature points in the interesting object and to track the object using the feature points. In this paper, we propose a method to track interesting objects in real time by eliminating unnecessary information from objects, generating feature point descriptors using only key feature points, and reducing computational complexity for object recognition. Experimental results show that the proposed method is faster and more robust than conventional methods, and can accurately track objects in various environments.

Robust Adaptive Control of Nonlinear Output Feedback Systems under Disturbance with Unknown Bounds

  • Y. H. Hwang;H. W. Yang;Kim, D. H.;Kim, D. W.;Kim, E. S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.37.2-37
    • /
    • 2001
  • This paper addresses the robust adaptive output feedback tracking for nonlinear systems under disturbances whose bounds are unknown. A new algorithm is proposed for estimation of unknown bounds and adaptive control of the uncertain nonlinear systems. The State estimation is solved using K-filters, together with the construction of a bound of an error in the state estimation due to the perturbation of the disturbance. Tuning functions are used to estimate unknown system parameters without overparametrization. The proposed control algorithm ensures that the out put tracking error converges to a residual set which can be arbitrarily small, while maintaining the boundedness of all other variables. A simulation shows the effectiveness of the proposed approach

  • PDF

Linear Model Predictive Control of 6-DOF Remotely Operated Underwater Vehicle Using Nonlinear Robust Internal-loop Compensator (비선형 강인 내부루프 보상기를 이용한 6자유도 원격조종 수중로봇의 선형 모델예측 제어)

  • Junsik Kim;Yuna Choi;Dongchul Lee;Youngjin Choi
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.1
    • /
    • pp.8-15
    • /
    • 2024
  • This paper proposes a linear model predictive control of 6-DOF remotely operated underwater vehicles using nonlinear robust internal-loop compensator (NRIC). First, we design a integrator embedded linear model prediction controller for a linear nominal model, and then let the real model follow the values calculated through forward dynamics. This work is carried out through an NRIC and in this process, modeling errors and external disturbance are compensated. This concept is similar to disturbance observer-based control, but it has the difference that H optimality is guaranteed. Finally, tracking results at trajectory containing the velocity discontinuity point and the position tracking performance in the disturbance environment is confirmed through the comparative study with a traditional inverse dynamics PD controller.