• 제목/요약/키워드: Robust speed control

검색결과 543건 처리시간 0.025초

PID-전문가 복합형 제어기 설계 (Design of PID-Expert hybrid Controllers)

  • 조현섭
    • 한국정보전자통신기술학회논문지
    • /
    • 제2권3호
    • /
    • pp.103-108
    • /
    • 2009
  • 산업자동화의 고정밀도에 따라 강인한 제어가 요구되고 있다. 하지만 PID 제어기를 갖는 전동기 시스템이 부하 외란을 받게 되면 제어시스템의 강인 제어는 어렵게 된다. 이에 대해 보완적인 한 방법으로 본 논문에서는 전동기 제어 시스템을 위한 PID-전문가 복합형 제어기법을 제시하였다. 만약 PID 제어 시스템이 안정한 상태에 있다면 전문가 제어기는 사용되지 않는다. 그러나 오차가 일단 발생하게 되면, 전문가 제어기는 오차를 구속 영역 내로 들어가도록 제어한다. 이에 따라 외란의 영향은 현저히 감소하게 된다. PID-전문가 복합형 제어기를 이용한 직류 서보 전동기의 강인성을 시뮬레이션에 의해 확인하였다.

  • PDF

초정밀 선형 모터 시스템의 적응형 힘리플 보상과 정밀 트랙킹 제어 (Adaptive Force Ripple Compensation and Precision Tracking Control of High Precision Linear Motor System)

  • 최영만;권대갑;이문구
    • 한국정밀공학회지
    • /
    • 제22권12호
    • /
    • pp.51-60
    • /
    • 2005
  • This paper describes a robust control scheme for high-speed and long stroke scanning motion of high precision linear motor system consisting of linear motor, air bearing guide and position measurement system using heterodyne interferometer. Nowadays, semiconductor process and inspection of wafer or LCD need high speed and long travel length for their high throughput and extremely small velocity fluctuations or tracking errors. In order to satisfy these conditions, linear motor system are widely used because they have large thrust force and do not need motion conversion mechanisms such as ball screw, rack & pinion or capstan with which the system are burdened. However linear motors have a problem called force ripple. Force ripple deteriorates the tracking performances and makes periodic position errors. So, force ripple must be compensated. To maximize the tracking performance of linear motor system, we propose the control scheme which is composed of a robust control method, Time Delay Controller (TDC) and a feedforward control method, Zero Phase Error Tracking Control (ZPETC) for accurate tracking a given trajectory and an adaptive force ripple compensation (AFC) algorithm fur estimating and compensating force ripple. The adaptive ripple compensation is continuously refined on the basis of tracking error. Computer simulation results based on modeled parameters verify the effectiveness of the proposed control scheme for high-speed, long stroke and high precision scanning motion and show that the proposed control scheme can achieve a sup error tracking performance in comparison to conventional TDC control.

H$\infty$ 제어기법을 이용한 2축 구동 시스템의 위치동기제어 (Position Synchronous Control of a Two-Axes Driving System by H$\infty$ Approch)

  • 변정환;여동준
    • 한국정밀공학회지
    • /
    • 제18권2호
    • /
    • pp.192-198
    • /
    • 2001
  • In this study, a methodology of synchronous control which can be applied to position synchronization of a two-axes driving system has been developed. The synchronous error is caused by model uncertainties and torque disturbance of each axis. To overcome these problems, the proposed synchronous control system has been composed of two speed controllers and one synchronous controller. The speed controllers based on PID control law are aimed at the following to speed reference. And the parameters of speed controllers have been designed in order that speed response of the second axis corresponds with one of first axis. Especially, considering to model uncertainties of each axis, the synchronous controller has been designed using H$\infty$ control theory. The controller eliminates the synchronous error by controlling speed of the second axis. The effectiveness of the proposed method has been verified through simulation.

  • PDF

능동 하모닉 기어구동시스템의 동기화제어 (Synchronized Control of Active Harmonic Gear System)

  • 김상진;문덕홍;김영복
    • 동력기계공학회지
    • /
    • 제18권1호
    • /
    • pp.112-119
    • /
    • 2014
  • In this paper, the authors consider a gimbal system in which a camera is installed to reconnoiter the objects or targets. The issue for this considered system is to obtain information with good quality always. To achieve given objective, it is necessary to control the gimbal system with accurate rotation angle and speed. In this paper, the authors design a robust control system based on $H_{\infty}$ control framework. The controller is designed using a plant model obtained by experiment and simulation. And the experiment result with good control performance is presented.

확장성과 안정성을 고려한 동기제어계의 구축에 관한 연구 (A Study on Construction of Synchronous Control System for Extension and Stability)

  • 변정환;김영복
    • 대한기계학회논문집A
    • /
    • 제26권6호
    • /
    • pp.1135-1142
    • /
    • 2002
  • In this study, a methodology of synchronous control which can be applied to position synchronization of a multi-axes driving system has been developed. The synchronous error is caused by model uncertainties and disturbance at each axis. To overcome these problems, the synchronous control system of each axis has been composed of reference model, speed and synchronous controllers. The speed control system has been designed to follow speed reference. And the synchronous controller has been designed to keep minimizing the position synchronous error by reference model and H$\sub$ / approach. By the proposed method, position synchronous control system can be easily extended to two or more axes driving system. The effectiveness of the proposed method has been demonstrated by experiment.

MRAC(Model Reference Adaptive Control)를 이용한 센서리스 벡터제어 속도추정기설계 (A speed estimate. design using MRAC(Model Reference Adaptive Control) for Sensorless Vector Control)

  • 최승현;강대규;박정환;이성근;김윤식
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2000년도 추계종합학술대회
    • /
    • pp.562-567
    • /
    • 2000
  • 본 논문에서는 센서리스 벡터제어를 위한 MRAC를 이용해 속도추정기를 설계한다. 이 속도추정기는 파라미터 변동에 강인하며, 그 속도값은 센서리스 벡터제어구현을 위해 필요한 속도정보로 피드백되어 사용된다. 컴퓨터시뮬레이션을 통해 그 타당성을 입증하였다.

  • PDF

Sensorless vector control for super-high speed PMSM drive

  • Bae Bon-Ho;Sul Seung-Ki;Kwon Jeong-Hyeck;Shin Jong-Sub
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 Proceedings ICPE 01 2001 International Conference on Power Electronics
    • /
    • pp.773-778
    • /
    • 2001
  • This paper describes the implementation of the vector control schemes for a variable-speed 131kW PMSM (Permanent Magnet Synchronous Motor) in super-high speed application. The vector control with synchronous reference frame current regulator has been implemented with the challenging requirements such as the extremely low stator inductance$(28^{\mu}H)$, the high dc link voltage(600V) and the high excitation frequency(1.2kHz). Because the conventional position sensor is not reliable in super-high speed, a vector control scheme without any position sensor has been proposed. The proposed sensorless algorithm is implemented by processing the output voltage of the PI current regulator, and hence the structure is simple and the estimated speed is robust to the measurement noise. The experimental system has been built and the proposed control has been implemented and evaluated. The test result, up to the speed of 60,000 r/min, shows the validity of the proposed control.

  • PDF

Design of Robust Resonance Suppression Controller in Parameter Variation for Speed Control of Parallel Connected Dual SPMSMs Fed by a Single Inverter

  • Yun, Chul;Jang, Tae-Sung;Cho, Nae-Soo;Yoon, Byung-Keun;Kwon, Woo-Hyen
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권5호
    • /
    • pp.1908-1916
    • /
    • 2018
  • This paper proposes a controller design method for suppressing the resonance generated in the slave motor in the middle and low speed operation range, according to the load and parameter differences between two motors, during parallel operation using the master and slave method that controls two surface permanent magnet synchronous motors connected in parallel by a single inverter. The proposed resonance suppression controller is directly obtained by analyzing the resonance characteristics, using the lead controller method. Therefore, it is possible to fundamentally reduce trial and error to set the controller gain. In addition, because the proposed resonance suppression controller was designed as a lead controller, the stability region of the system increased owing to the added zero point, making the system robust with respect to parametric variations. Simulations and experiments confirmed the usefulness of the proposed method and the system's robustness with respect to parametric variations.

고속 슬라이딩모드 관측기를 이용한 PMSM 센서리스 속도제어 (PMSM Sensorless Speed Control Using a High Speed Sliding Mode Observer)

  • 손주범;김홍렬;서영수;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제16권3호
    • /
    • pp.256-263
    • /
    • 2010
  • The paper proposes a sensorless speed control strategy for a PMSM (Permanent Magnet Synchronous Motor) based on a new SMO (Sliding Mode Observer), which substitutes a signum function with a sigmoid function. To apply robust sensorless control of PMSM against parameter fluctuations and disturbance, the high speed SMO is proposed, which estimates the rotor position and angular velocity from the back EMF. The low-pass filter and additional position compensation of the rotor are used to reduce the chattering problem commonly found in sliding mode observer with signum function, which becomes possible by applying the sigmoid function with the control of a switching function. Also the proposed sliding mode observer with the sigmoid function has better efficiency than the conventional sliding mode observer since it adjusts the observer gain by variable boundary layer and estimates the stator resistance. The stability of the proposed sliding mode observer is verified by the Lyapunov second method in determining the observer gain. The validity of the proposed high speed PMSM sensorless velocity control has been demonstrated by real experiments.

속도와 2차 저항의 동시 추정이 가능한 유도전동기의 극 저속 영역 센서리스 속도제어 (Sensorless Control of Induction Motors with Simultaneous Estimation of Speed and Rotor Resistance in the Very Low Speed Region)

  • 정석권;이진국;유삼상
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제53권9호
    • /
    • pp.552-561
    • /
    • 2004
  • This paper is concerned with a new speed sensorless induction motor scheme which can be successfully applied to at any speed including even zero speed. The proposed method is robust against rotor resistance variations. In addition, simultaneous on-line estimations of speed and rotor resistance are realized based on a feedforward type torque control approach. The rotor flux with a low frequency sinusoidal waveform has been utilized to help the simultaneous estimation for both speed and rotor resistance. The control scheme has no current minor loop to determine voltage references. Since the proposed estimation does not depend on any derivative terms of currents and stator voltages, it offers a good performance at extremely low speed region for sensorless induction motor. Furthermore, the proposed control is simply using motor parameters and stator currents without determining any PI gains for current feedback and any signal injection for the rotor resistance estimation. Finally, both simulation and experimental results are given to show the effectiveness of this method.