• 제목/요약/키워드: Robust regression estimation

검색결과 99건 처리시간 0.017초

Self-tuning Robust Regression Estimation

  • Park, You-Sung;Lee, Dong-Hee
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2003년도 추계 학술발표회 논문집
    • /
    • pp.257-262
    • /
    • 2003
  • We introduce a new robust regression estimator, self-tuning regression estimator. Various robust estimators have been developed with discovery for theories and applications since Huber introduced M-estimator at 1960's. We start by announcing various robust estimators and their properties, including their advantages and disadvantages, and furthermore, new estimator overcomes drawbacks of other robust regression estimators, such as ineffective computation on preserving robustness properties.

  • PDF

A study on robust regression estimators in heteroscedastic error models

  • Son, Nayeong;Kim, Mijeong
    • Journal of the Korean Data and Information Science Society
    • /
    • 제28권5호
    • /
    • pp.1191-1204
    • /
    • 2017
  • Weighted least squares (WLS) estimation is often easily used for the data with heteroscedastic errors because it is intuitive and computationally inexpensive. However, WLS estimator is less robust to a few outliers and sometimes it may be inefficient. In order to overcome robustness problems, Box-Cox transformation, Huber's M estimation, bisquare estimation, and Yohai's MM estimation have been proposed. Also, more efficient estimations than WLS have been suggested such as Bayesian methods (Cepeda and Achcar, 2009) and semiparametric methods (Kim and Ma, 2012) in heteroscedastic error models. Recently, Çelik (2015) proposed the weight methods applicable to the heteroscedasticity patterns including butterfly-distributed residuals and megaphone-shaped residuals. In this paper, we review heteroscedastic regression estimators related to robust or efficient estimation and describe their properties. Also, we analyze cost data of U.S. Electricity Producers in 1955 using the methods discussed in the paper.

Robust Cross Validation Score

  • Park, Dong-Ryeon
    • Communications for Statistical Applications and Methods
    • /
    • 제12권2호
    • /
    • pp.413-423
    • /
    • 2005
  • Consider the problem of estimating the underlying regression function from a set of noisy data which is contaminated by a long tailed error distribution. There exist several robust smoothing techniques and these are turned out to be very useful to reduce the influence of outlying observations. However, no matter what kind of robust smoother we use, we should choose the smoothing parameter and relatively less attention has been made for the robust bandwidth selection method. In this paper, we adopt the idea of robust location parameter estimation technique and propose the robust cross validation score functions.

Nonparametric M-Estimation for Functional Spatial Data

  • Attouch, Mohammed Kadi;Chouaf, Benamar;Laksaci, Ali
    • Communications for Statistical Applications and Methods
    • /
    • 제19권1호
    • /
    • pp.193-211
    • /
    • 2012
  • This paper deals with robust nonparametric regression analysis when the regressors are functional random fields. More precisely, we consider $Z_i=(X_i,Y_i)$, $i{\in}\mathbb{N}^N$ be a $\mathcal{F}{\times}\mathbb{R}$-valued measurable strictly stationary spatial process, where $\mathcal{F}$ is a semi-metric space and we study the spatial interaction of $X_i$ and $Y_i$ via the robust estimation for the regression function. We propose a family of robust nonparametric estimators for regression function based on the kernel method. The main result of this work is the establishment of the asymptotic normality of these estimators, under some general mixing and small ball probability conditions.

Robust extreme quantile estimation for Pareto-type tails through an exponential regression model

  • Richard Minkah;Tertius de Wet;Abhik Ghosh;Haitham M. Yousof
    • Communications for Statistical Applications and Methods
    • /
    • 제30권6호
    • /
    • pp.531-550
    • /
    • 2023
  • The estimation of extreme quantiles is one of the main objectives of statistics of extremes (which deals with the estimation of rare events). In this paper, a robust estimator of extreme quantile of a heavy-tailed distribution is considered. The estimator is obtained through the minimum density power divergence criterion on an exponential regression model. The proposed estimator was compared with two estimators of extreme quantiles in the literature in a simulation study. The results show that the proposed estimator is stable to the choice of the number of top order statistics and show lesser bias and mean square error compared to the existing extreme quantile estimators. Practical application of the proposed estimator is illustrated with data from the pedochemical and insurance industries.

시뮬레이션을 통한 다양한 로버스트 회귀추정량의 비교 연구 (A comparison study of various robust regression estimators using simulation)

  • 장수희;윤정연;전희주
    • 응용통계연구
    • /
    • 제29권3호
    • /
    • pp.471-485
    • /
    • 2016
  • 회귀모형의 대표적인 추정법인 최소제곱법은 오차항의 분포가 정규분포를 따르고 이상치가 없는 상황에서는 최적이지만, 자료가 회귀모형의 가정을 만족하지 않을 경우 또는 이상치를 포함하는 경우와 같이 자료가 오염된 상황에서는 왜곡된 추정 결과를 준다. 따라서 이상치에 민감한 최소제곱법의 단점을 보완하기 위해 다양한 로버스트 추정방법이 제안되었다. 본 논문에서는 MLE를 기반으로 제안된 M 추정량, 순서형 통계량을 기반으로 제안된 L 추정량, 잔차의 순위를 기반으로 제안된 R 추정량 계열에서 높은 붕괴점 또는 높은 효율을 갖는 대표적인 추정량들을 다양한 모의실험을 통해 비교 연구하였다. 추정량의 성능을 비교하는데 효율성 뿐만 아니라 편의, 분산을 포함한 분포를 살펴보았다. 그 결과 실제 데이터 적용에는 MM 추정량과 GR 추정량이 좋은 성능을 가진 것으로 보였다.

로지스틱회귀모형의 로버스트 추정을 위한 알고리즘 (Algorithm for the Robust Estimation in Logistic Regression)

  • 김부용;강명욱;최미애
    • 응용통계연구
    • /
    • 제20권3호
    • /
    • pp.551-559
    • /
    • 2007
  • 로지스틱회귀에서 일반적으로 사용되는 최대우도추정법은 이상점에 대해 로버스트 하지 않다. 따라서 본 논문에서는 로지스틱회귀모형의 로버스트 추정을 위한 알고리즘을 제안하고자 한다. 이 알고리즘은 V-마스크 형태의 경계기준에 의해 나쁜 지렛점과 수직이상점을 식별하고, 식별 결과를 바탕으로 이상점의 영향력을 감소시키기 위한 효과적인 방안을 모색한다. 이상점의 영향력 감소는 가중치와 조정치를 적절히 선정함으로 가능하며, 그 결과 붕괴점이 높은 추정치를 얻게 된다. 제안된 알고리즘을 다양한 자료에 적용하여 정분류율을 측정하여 비교하였는데, 새로운 알고리즘이 최대우도추정보다 정확한 분류를 해 주는 것으로 평가되었다.

ROBUST REGRESSION ESTIMATION BASED ON DATA PARTITIONING

  • Lee, Dong-Hee;Park, You-Sung
    • Journal of the Korean Statistical Society
    • /
    • 제36권2호
    • /
    • pp.299-320
    • /
    • 2007
  • We introduce a high breakdown point estimator referred to as data partitioning robust regression estimator (DPR). Since the DPR is obtained by partitioning observations into a finite number of subsets, it has no computational problem unlike the previous robust regression estimators. Empirical and extensive simulation studies show that the DPR is superior to the previous robust estimators. This is much so in large samples.

로버스트주성분회귀에서 최적의 주성분선정을 위한 기준 (A Criterion for the Selection of Principal Components in the Robust Principal Component Regression)

  • 김부용
    • Communications for Statistical Applications and Methods
    • /
    • 제18권6호
    • /
    • pp.761-770
    • /
    • 2011
  • 회귀모형에 연관성이 높은 설명변수들이 포함되면 다중공선성의 문제가 야기되며, 동시에 자료에 회귀 이상점들이 포함되면 최소자승추정량에 바탕을 둔 제반 통계적 추론은 심각한 결함을 갖게 된다. 이러한 현상들은 데이터마이닝 분야에서 많이 볼 수 있는데, 본 논문에서는 두 가지 문제를 동시에 해결하기 위한 방안으로서 로버스트주성분회귀를 제안하였다. 특히 최적의 주성분을 선정하기 위한 새로운 기준을 개발하였는데, 설명변수들의 표본공분산 대신에 MVE-추정량을 기반으로 하였으며, 고유치가 아니라 상태지수의 크기에 바탕을 둔 선정기준을 제안하였다. 그리고 주성분모형에서의 추정을 위하여 회귀이상점에 대해 로버스트한 LTS-추정을 도입하였다. 제안된 선정기준이 기존의 기준들보다 다중공선성과 이상점이 유발하는 문제들을 잘 해결할 수 있음을 모의실험을 통하여 확인하였다.

Usage of auxiliary variable and neural network in doubly robust estimation

  • Park, Hyeonah;Park, Wonjun
    • Journal of the Korean Data and Information Science Society
    • /
    • 제24권3호
    • /
    • pp.659-667
    • /
    • 2013
  • If the regression model or the propensity model is correct, the unbiasedness of the estimator using doubly robust imputation can be guaranteed. Using a neural network instead of a logistic regression model for the propensity model, the estimators using doubly robust imputation are approximately unbiased even though both assumed models fail. We also propose a doubly robust estimator of ratio form using population information of an auxiliary variable. We prove some properties of proposed theory by restricted simulations.