• Title/Summary/Keyword: Robust adaptive algorithm

Search Result 376, Processing Time 0.027 seconds

Filtered-x LMS Algorithm for noise and vibration control system (잡음 및 진동제어시스템을 위한 Filtered -x LMS 알고리즘)

  • kim, soo-yong;Jee, suk-kun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.697-702
    • /
    • 2009
  • Filtered-x LMS algorithm maybe the most popular control algorithm used in DSP implementations of active noise and vibration control system. The algorithm converges on a timescale comparable to the response time of the system to be controlled, and is found to be very robust. If the pure tone reference signal is synchronously sampled, it is found that the behavior of the adaptive system can be completely described by a matrix of linear, time invariant, transfer functions. This is used to explain the behavior observed in simulations of a simplified single input, single output adaptive system, which retains many of the properties of the multichannel algorithm.

  • PDF

Performance Enhancement for Speaker Verification Using Incremental Robust Adaptation in GMM (가무시안 혼합모델에서 점진적 강인적응을 통한 화자확인 성능개선)

  • Kim, Eun-Young;Seo, Chang-Woo;Lim, Yong-Hwan;Jeon, Seong-Chae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.268-272
    • /
    • 2009
  • In this paper, we propose a Gaussian Mixture Model (GMM) based incremental robust adaptation with a forgetting factor for the speaker verification. Speaker recognition system uses a speaker model adaptation method with small amounts of data in order to obtain a good performance. However, a conventional adaptation method has vulnerable to the outlier from the irregular utterance variations and the presence noise, which results in inaccurate speaker model. As time goes by, a rate in which new data are adapted to a model is reduced. The proposed algorithm uses an incremental robust adaptation in order to reduce effect of outlier and use forgetting factor in order to maintain adaptive rate of new data on GMM based speaker model. The incremental robust adaptation uses a method which registers small amount of data in a speaker recognition model and adapts a model to new data to be tested. Experimental results from the data set gathered over seven months show that the proposed algorithm is robust against outliers and maintains adaptive rate of new data.

Robust Adaptive Nonlinear Control for Tilt-Rotor UAV

  • Yun, Han-Soo;Ha, Cheol-Keun;Kim, Byoung-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.57-62
    • /
    • 2004
  • This paper deals with a waypoint trajectory following problem for the tilt-rotor UAV under development in Korea (TR-KUAV). In this problem, dynamic model inversion based on the linearized model and Sigma-Phi neural network with adaptive weight update are involved to realize the waypoint following algorithm for the vehicle in the helicopter flight mode (nacelle angle=0 deg). This algorithms consists of two main parts: outer-loop system as a command generator and inner-loop system as stabilizing controller. In this waypoint following problem, the position information in the inertial axis is given to the outer-loop system. From this information, Attitude Command/Attitude Hold logic in the longitudinal channel and Rate Command/Attitude Hold logic in the lateral channel are realized in the inner-loop part of the overall structure of the waypoint following algorithm. The nonlinear simulation based on the TR-KUAV is carried out to evaluate the stability and performance of the algorithm. From the numerical simulation results, the algorithm shows very good tracking performance of passing the waypoints given. Especially, it is observed that ACAH/RCAH logic in the inner-loop has the satisfactory performance due to adaptive neural network in spite of the model error coming from the linear model based inversion.

  • PDF

A Study on Adaptive Random Signal-Based Learning Employing Genetic Algorithms and Simulated Annealing (유전 알고리즘과 시뮬레이티드 어닐링이 적용된 적응 랜덤 신호 기반 학습에 관한 연구)

  • Han, Chang-Wook;Park, Jung-Il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.10
    • /
    • pp.819-826
    • /
    • 2001
  • Genetic algorithms are becoming more popular because of their relative simplicity and robustness. Genetic algorithms are global search techniques for nonlinear optimization. However, traditional genetic algorithms, though robust, are generally not the most successful optimization algorithm on any particular domain because they are poor at hill-climbing, whereas simulated annealing has the ability of probabilistic hill-climbing. Therefore, hybridizing a genetic algorithm with other algorithms can produce better performance than using the genetic algorithm or other algorithms independently. In this paper, we propose an efficient hybrid optimization algorithm named the adaptive random signal-based learning. Random signal-based learning is similar to the reinforcement learning of neural networks. This paper describes the application of genetic algorithms and simulated annealing to a random signal-based learning in order to generate the parameters and reinforcement signal of the random signal-based learning, respectively. The validity of the proposed algorithm is confirmed by applying it to two different examples.

  • PDF

Adaptive Fuzzy IMM Algorithm for Position Tracking of Maneuvering Target (기동표적의 위치추적을 위한 적응 퍼지 IMM 알고리즘)

  • Kim, Hyun-Sik
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.7
    • /
    • pp.855-861
    • /
    • 2007
  • In real system application, the IMM-based position tracking algorithm requires robust performance, less computing resources and easy design procedure with respect to the uncertain target maneuvering, To solve these problems, an adaptive fuzzy interacting multiple model (AFIMM) algorithm, which is based on the well-defined basis sub-models and well-adjusted mode transition probabilities (MTPs), is proposed. Simulation results show that the proposed algorithm effectively solves the problems in the real system application of the IMM-based position tracking algorithm.

Development of Robust Adaptive Learning Control for Nonlinear System (비선형 시스템에 대한 강인성 적응 학습 제어기의 개발)

  • Yu, Yeong-Sun;Ha, Hwan-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.12
    • /
    • pp.1895-1902
    • /
    • 2001
  • This paper gives an overview of the relationships between methods of loaming and adaptive control. It is the objective of this paper to develop adaptive learning control algorithms that combine the advantages of adaptive control with those of leaning control to the extent possible for the type of system model used. The robustness of this adaptive loaming control with respect to reinitialization errors and fluctuation of dynamics from disturbance is analyzed extensively. Simulation results have shown to verify the effectiveness of the proposed control algorithm.

Sliding Mode Control with Fuzzy Adaptive Perturbation Compensator for 6-DOF Parallel Manipulator

  • Park, Min-Kyu;Lee, Min-Cheol;Yoo, Wan-Suk
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.535-549
    • /
    • 2004
  • This paper proposes a sliding mode controller with fuzzy adaptive perturbation compensator(FAPC) to get a good control performance and reduce the chatter, The proposed algorithm can reduce the chattering because the proposed fuzzy adaptive perturbation compensator compensates the perturbation terms. The compensator computes the control input for compensating unmodeled dynamic terms and disturbance by using the observer-based fuzzy adaptive network(FAN) The weighting parameters of the compensate. are updated by on-line adaptive scheme in order to minimize the estimation error and the estimation velocity error of each actuator. Therefore, the combination of sliding mode control and fuzzy adaptive network gives the robust and intelligent routine to get a good control performance. To evaluate the control performance of the proposed approach, tracking control is experimentally carried out for the hydraulic motion platform which consists of a 6-DOF parallel manipulator.

An Adaptive Occluded Region Detection and Interpolation for Robust Frame Rate Up-Conversion

  • Kim, Jin-Soo;Kim, Jae-Gon
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.2
    • /
    • pp.201-206
    • /
    • 2011
  • FRUC (Frame Rate Up-Conversion) technique needs an effective frame interpolation algorithm using motion information between adjacent neighboring frames. In order to have good visual qualities in the interpolated frames, it is necessary to develop an effective detection and interpolation algorithms for occluded regions. For this aim, this paper proposes an effective occluded region detection algorithm through the adaptive forward and backward motion searches and also by introducing the minimum value of normalized cross-correlation coefficient (NCCC). That is, the proposed scheme looks for the location with the minimum sum of absolute differences (SAD) and this value is compared to that of the location with the maximum value of NCCC based on the statistics of those relations. And, these results are compared with the size of motion vector and then the proposed algorithm decides whether the given block is the occluded region or not. Furthermore, once the occluded regions are classified, then this paper proposes an adaptive interpolation algorithm for occluded regions, which still exist in the merged frame, by using the neighboring pixel information and the available data in the occluded block. Computer simulations show that the proposed algorithm can effectively classify the occluded region, compared to the conventional SAD-based method and the performance of the proposed interpolation algorithm has better PSNR than the conventional algorithms.

Variable Step LMS Algorithm using Fibonacci Sequence (피보나치 수열을 활용한 가변스텝 LMS 알고리즘)

  • Woo, Hong-Chae
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.19 no.2
    • /
    • pp.42-46
    • /
    • 2018
  • Adaptive signal processing is quite important in various signal and communication environments. In adaptive signal processing methods since the least mean square(LMS) algorithm is simple and robust, it is used everywhere. As the step is varied in the variable step(VS) LMS algorithm, the fast convergence speed and the small excess mean square error can be obtained. Various variable step LMS algorithms are researched for better performances. But in some of variable step LMS algorithms the computational complexity is quite large for better performances. The fixed step LMS algorithm with a low computational complexity merit and the variable step LMS algorithm with a fast convergence merit are combined in the proposed sporadic step algorithm. As the step is sporadically updated, the performances of the variable step LMS algorithm can be maintained in the low update rate using Fibonacci sequence. The performances of the proposed variable step LMS algorithm are proved in the adaptive equalizer.

The Adaptive-Neuro Control of Robot Manipulator Based-on TMS320C50 Chip (TMS320C50칩을 이용한 로봇 매니퓰레이터의 적응-신경제어)

  • 이우송;김용태;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.305-311
    • /
    • 2003
  • We propose a new technique of adaptive-neuro controller design to implement real-time control of robot manipulator, Unlike the well-established theory for the adaptive control of linear systems, there exists relatively little general theory for the adaptive control of nonlinear systems. Adaptive control technique is essential for providing a stable and robust performance for application of robot control. The proposed neuro control algorithm is one of loaming a model based error back-propagation scheme using Lyapunov stability analysis method. Through simulation, the proposed adaptive-neuro control scheme is proved to be a efficient control technique for real time control of robot system using DSPs(TMS320C50)

  • PDF