• Title/Summary/Keyword: Robust Search Algorithm

Search Result 152, Processing Time 0.027 seconds

Computational enhancement to the augmented lagrange multiplier method for the constrained nonlinear optimization problems (구속조건식이 있는 비선형 최적화 문제를 위한 ALM방법의 성능향상)

  • 김민수;김한성;최동훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.2
    • /
    • pp.544-556
    • /
    • 1991
  • The optimization of many engineering design problems requires a nonlinear programming algorithm that is robust and efficient. A general-purpose nonlinear optimization program IDOL (Interactive Design Optimization Library) is developed based on the Augmented Lagrange Mulitiplier (ALM) method. The ideas of selecting a good initial design point, using resonable initial values for Lagrange multipliers, constraints scaling, descent vector restarting, and dynamic stopping criterion are employed for computational enhancement to the ALM method. A descent vector is determined by using the Broydon-Fletcher-Goldfarb-Shanno (BFGS) method. For line search, the Incremental-Search method is first used to find bounds on the solution, then the bounds are reduced by the Golden Section method, and finally a cubic polynomial approximation technique is applied to locate the next design point. Seven typical test problems are solved to show IDOL efficient and robust.

Emergency Service Restoration and Load Balancing in Distribution Networks Using Feeder Loadings Balance Index (피더부하 균등화지수를 이용한 배전계통의 긴급정전복구 및 부하균등화)

  • Choe, Sang-Yeol;Jeong, Ho-Seong;Sin, Myeong-Cheol
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.5
    • /
    • pp.217-224
    • /
    • 2002
  • This paper presents an algorithm to obtain an approximate optimal solution for the service restoration and load balancing of large scale radial distribution system in a real-time operation environment. Since the problem is formulated as a combinatorial optimization problem, it is difficult to solve a large-scale combinatorial optimization problem accurately within the reasonable computation time. Therefore, in order to find an approximate optimal solution quickly, the authors proposed an algorithm which combines optimization technique called cyclic best-first search with heuristic based feeder loadings balance index for computational efficiency and robust performance. To demonstrate the validity of the proposed algorithm, numerical calculations are carried out the KEPCO's 108 bus distribution system.

A high performance disparity extraction algorithm using low resolution disparity histogram (저 해상도 변위 히스토그램을 이용한 고성능 변위정보 추출 알고리듬)

  • 김남규;이광도;김형곤;차균현
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.3
    • /
    • pp.131-143
    • /
    • 1998
  • This paper presents a high performance disparity extraction algorithm that generate a dense and accurate disparity map using low-resolution disparity histogram. Disparity distribution of background and object areas can besegmented from low-resolution disparity histogram. These information can be used to reduce the search area and search range of the high-resolution image resulting reliable disparity information in high speed. The computationally efficient matching pixel count(MPC) similarity measure technique is useed extensively toremove the redundancies inherent in the area-based matching method, and also results robust matching at the boundary region. Resulting maches are further improved using iterative support algorithm and post processing. We have obtained good results on randomdot stereogram and real images obtained in our carmera system.

  • PDF

Efficient Image Search using Advanced SURF and DCD on Mobile Platform (모바일 플랫폼에서 개선된 SURF와 DCD를 이용한 효율적인 영상 검색)

  • Lee, Yong-Hwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.2
    • /
    • pp.53-59
    • /
    • 2015
  • Since the amount of digital image continues to grow in usage, users feel increased difficulty in finding specific images from the image collection. This paper proposes a novel image searching scheme that extracts the image feature using combination of Advanced SURF (Speed-Up Robust Feature) and DCD (Dominant Color Descriptor). The key point of this research is to provide a new feature extraction algorithm to improve the existing SURF method with removal of unnecessary feature in image retrieval, which can be adaptable to mobile system and efficiently run on the mobile environments. To evaluate the proposed scheme, we assessed the performance of simulation in term of average precision and F-score on two databases, commonly used in the field of image retrieval. The experimental results revealed that the proposed algorithm exhibited a significant improvement of over 14.4% in retrieval effectiveness, compared to OpenSURF. The main contribution of this paper is that the proposed approach achieves high accuracy and stability by using ASURF and DCD in searching for natural image on mobile platform.

A Study of Design on PD Controller Having Robust Performance Using GA (GA를 이용한 강인한 성능을 가지는 PD 제어기의 설계에 관한 연구)

  • Kim, D.W.;Son, M.H.;Hwang, H.J.;Park, J.H.;Youn, Y.D.;Do, D.H.;Choi, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.795-797
    • /
    • 1998
  • This paper suggests a design method of the optimal PD control system having robust performance. This PD control system is designed by applying genetic algorithm(GA) with reference model to the optimal determination of proportional(P) gain and derivative(D) gain that are given by PD servo controller. These proportional and derivative gains are simultaneously optimized in the search domain guaranteeing the robust performance of closed-loop system. This PD control system is applied to the fuel-injection control system of diesel engine and compared with ${\mu}$ -synthesis control system for robust performance. The effectiveness of this PD control system is verified by computer simulation.

  • PDF

A Design on Model-Following $H_{\infty}$ Control System Having Robust Performance (강인한 성능을 가지는 모델추종형 $H_{\infty}$ 제어 시스템의 설계)

  • Hwang, Hyun-Joon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.5
    • /
    • pp.913-921
    • /
    • 2009
  • This paper suggests a deign method of the model-following $H{\infty}$ control system having robust performance. This $H{\infty}$ control system is designed by applying genetic algorithm(GA) with reference model to the optimal determination of weighting functions and design parameter ${\gamma}$ that are given by $H{\infty}$ control theory. These weighting functions and design parameter ${\gamma}$ are optimized simultaneously in the search domain guaranteeing the robust performance of closed-loop system. The effectiveness of this $H_{\infty}$ control system is verified by computer simulation.

PC Cluster based Parallel Adaptive Evolutionary Algorithm for Service Restoration of Distribution Systems

  • Mun, Kyeong-Jun;Lee, Hwa-Seok;Park, June-Ho;Kim, Hyung-Su;Hwang, Gi-Hyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.4
    • /
    • pp.435-447
    • /
    • 2006
  • This paper presents an application of the parallel Adaptive Evolutionary Algorithm (AEA) to search an optimal solution of the service restoration in electric power distribution systems, which is a discrete optimization problem. The main objective of service restoration is, when a fault or overload occurs, to restore as much load as possible by transferring the de-energized load in the out of service area via network reconfiguration to the appropriate adjacent feeders at minimum operational cost without violating operating constraints. This problem has many constraints and it is very difficult to find the optimal solution because of its numerous local minima. In this investigation, a parallel AEA was developed for the service restoration of the distribution systems. In parallel AEA, a genetic algorithm (GA) and an evolution strategy (ES) in an adaptive manner are used in order to combine the merits of two different evolutionary algorithms: the global search capability of the GA and the local search capability of the ES. In the reproduction procedure, proportions of the population by GA and ES are adaptively modulated according to the fitness. After AEA operations, the best solutions of AEA processors are transferred to the neighboring processors. For parallel computing, a PC cluster system consisting of 8 PCs was developed. Each PC employs the 2 GHz Pentium IV CPU and is connected with others through switch based fast Ethernet. To show the validity of the proposed method, the developed algorithm has been tested with a practical distribution system in Korea. From the simulation results, the proposed method found the optimal service restoration strategy. The obtained results were the same as that of the explicit exhaustive search method. Also, it is found that the proposed algorithm is efficient and robust for service restoration of distribution systems in terms of solution quality, speedup, efficiency, and computation time.

A hybrid identification method on butterfly optimization and differential evolution algorithm

  • Zhou, Hongyuan;Zhang, Guangcai;Wang, Xiaojuan;Ni, Pinghe;Zhang, Jian
    • Smart Structures and Systems
    • /
    • v.26 no.3
    • /
    • pp.345-360
    • /
    • 2020
  • Modern swarm intelligence heuristic search methods are widely applied in the field of structural health monitoring due to their advantages of excellent global search capacity, loose requirement of initial guess and ease of computational implementation etc. To this end, a hybrid strategy is proposed based on butterfly optimization algorithm (BOA) and differential evolution (DE) with purpose of effective combination of their merits. In the proposed identification strategy, two improvements including mutation and crossover operations of DE, and dynamic adaptive operators are introduced into original BOA to reduce the risk to be trapped in local optimum and increase global search capability. The performance of the proposed algorithm, hybrid butterfly optimization and differential evolution algorithm (HBODEA) is evaluated by two numerical examples of a simply supported beam and a 37-bar truss structure, as well as an experimental test of 8-story shear-type steel frame structure in the laboratory. Compared with BOA and DE, the numerical and experimental results show that the proposed HBODEA is more robust to detect the reduction of stiffness with limited sensors and contaminated measurements. In addition, the effect of search space, two dynamic operators, population size on identification accuracy and efficiency of the proposed identification strategy are further investigated.

A Study on Algorithm of Pulmonary Blood Vessel Search Using Pyramid Images and Fuzzy Theory (피라미드 영상과 퍼지 이론을 이용한 흉부 혈관 성분의 검출에 관한 연구)

  • Hwang, Jun-Heoun;Im, Jung-Gi;Han, Man-Cheong;Min, Byoung-Goo
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1990 no.11
    • /
    • pp.11-14
    • /
    • 1990
  • The detection of pulmonary blood vessels is very difficult owing to their complex tree structures and different widths. In this paper, We propose a new detection algorithm. The motivation of this algorithm is that Han is the best detector. So, this algorithm is developed to imitate the human searching process. To realize it, the algorithm consist of two components. One is Pyramid Images whose one pixel is median value of four pixels of the previous low level. Searching gradually from high level to low level, We concentrate on global and main information of structure at the first. Then based on it, We search the detailed data in low level. The other is fuzzy logic which makes it easy to convert searching process expressed as human language into numeric multi_value. This algorithm showes speedy and robust results. But the more study on both human searching process and the detection of small part is needed.

  • PDF

Searching for critical failure surface in slope stability analysis by using hybrid genetic algorithm

  • Li, Shouju;Shangguan, Zichang;Duan, Hongxia;Liu, Yingxi;Luan, Maotian
    • Geomechanics and Engineering
    • /
    • v.1 no.1
    • /
    • pp.85-96
    • /
    • 2009
  • The radius and coordinate of sliding circle are taken as searching variables in slope stability analysis. Genetic algorithm is applied for searching for critical factor of safety. In order to search for critical factor of safety in slope stability analysis efficiently and in a robust manner, some improvements for simple genetic algorithm are proposed. Taking the advantages of efficiency of neighbor-search of the simulated annealing and the robustness of genetic algorithm, a hybrid optimization method is presented. The numerical computation shows that the procedure can determine the minimal factor of safety and be applied to slopes with any geometry, layering, pore pressure and external load distribution. The comparisons demonstrate that the genetic algorithm provides a same solution when compared with elasto-plastic finite element program.