• Title/Summary/Keyword: Robust Saturation Controller

Search Result 42, Processing Time 0.027 seconds

An FNN based Adaptive Speed Controller for Servo Motor System

  • Lee, Tae-Gyoo;Lee, Je-Hie;Huh, Uk-Youl
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.6
    • /
    • pp.82-89
    • /
    • 1997
  • In this paper, an adaptive speed controller with an FNN(Feedforward Neural Network) is proposed for servo motor drives. Generally, the motor system has nonlinearities in friction, load disturbance and magnetic saturation. It is necessary to treat the nonlinearities for improving performance in servo control. The FNN can be applied to control and identify a nonlinear dynamical system by learning capability. In this study, at first, a robust speed controller is developed by Lyapunov stability theory. However, the control input has discontinuity which generates an inherent chattering. To solve the problem and to improve the performances, the FNN is introduced to convert the discontinuous input to continuous one in error boundary. The FNN is applied to identify the inverse dynamics of the motor and to control the motor using coordination of feedforward control combined with inverse motor dynamics identification. The proposed controller is developed for an SR motor which has highly nonlinear characteristics and it is compared with an MRAC(Model Reference Adaptive Controller). Experiments on an SR motor illustrate te validity of the proposed controller.

  • PDF

Position Control of Direct Drive Brushless Motor using The Adaptive Variable Structure Control with Nonliner Switching Surfaces (비선형 적응 가변 구조 제어기를 가지는 브러쉬 없는 직접 구동형 서보 모터의 위치 제어에 관한 연구)

  • Lee, Dae-Sik;Lee, Sang-Oh
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.69-71
    • /
    • 1997
  • The direct drive motor is directly coupled by load. So, it is directly affected by load and disturbances. To control the direct drive motor, a robust controller is need. The main feature of variable structure system is that system trajectories are robust and insensitive to parameter variations and disturbances in the sliding mode. In this paper, adaptive variable structure controller, is used for the BLDD SM(Brushless Direct Drive Servo Motor) control. The chattering problem is reduced by using the saturation function.

  • PDF

Stable Input-Constrained Neural-Net Controller for Uncertain Nonlinear Systems

  • Jang-Hyun Park;Gwi-Tae Park
    • KIEE International Transaction on Systems and Control
    • /
    • v.2D no.2
    • /
    • pp.108-114
    • /
    • 2002
  • This paper describes the design of a robust adaptive controller for a nonlinear dynamical system with unknown nonlinearities. These unknown nonlinearities are approximated by multilayered neural networks (MNNs) whose parameters are adjusted on-line, according to some adaptive laws far controlling the output of the nonlinear system, to track a given trajectory. The main contribution of this paper is a method for considering input constraint with a rigorous stability proof. The Lyapunov synthesis approach is used to develop a state-feedback adaptive control algorithm based on the adaptive MNN model. An overall control system guarantees that the tracking error converges at about zero and that all signals involved are uniformly bounded even in the presence of input saturation. Theoretical results are illustrated through a simulation example.

  • PDF

Design and Analysis of Dynamic Positioning System Using a Nonlinear Robust Observer

  • Kim, Myung-Hyun
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • v.5 no.1
    • /
    • pp.46-52
    • /
    • 2002
  • A robust nonlinear observer, utilizing the sliding mode concept, is developed for the dynamic positioning of ships. The observer provides the estimates of linear velocities of the ship and bias from slowly varying environmental loads. It also filters out wave frequency motion to avoid wear of actuators and excessive fuel consumption. The main advantage of the proposed observer is in its robustness. Especially, the observer structure with a saturation function makes the proposed observer robust against neglected nonlinearties, disturbances and uncertainties. Since the mathematical model of DP ships is difficult to obtain and includes uncertainties and disturbances, it is very important for the observer to be robust. A nonlinear output feedback controller is derives based on the developed observer using the observer backstepping technique, and the global stability of the observer and control law is shown by Lyapunov stability theory.. A set of simulation was carried out to investigate the performance of the proposed observer for dynamic positioning of ships.

  • PDF

Continuous Variable Structure Controller for the Tracking Control of PMSM (영구자석 동기전동기의 위치 추적 제어를 위한 연속 가변 구조 제어기)

  • Hong, Chan-Ho;Chung, Se-Kyo;Lee, Jung-Hoon;Youn, Myung-Joong
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.261-263
    • /
    • 1995
  • The continuous sliding mode controller with disturbance observer for the tracking control of permanent magnet synchronous motor(PMSM) is presented. In spite of the robust performance of variable structure control, there exists an undesirable chattering problem, which may be very harmful in some cases. To alleviate the problem, continuous sliding mode controller with continuous saturation function is proposed and also the prescribed performance can be obtained by efficient compensation of disturbance. Experimental results using 7.5 kW, 4000 rpm motor which is controlled by TMS320C30 DSP, are shown to demonstrate the usefulness of the proposed algorithm.

  • PDF

A Position Control of EHA Systems using Adaptive PID Sliding Mode Control Scheme (적응PID 슬라이딩 모드 제어기법을 적용한 EHA 시스템의 위치제어)

  • Lee, Ji-Min;Park, Sung-Hwan;Park, Min-Gyu;Kim, Jong-Shik
    • Journal of Power System Engineering
    • /
    • v.17 no.4
    • /
    • pp.120-130
    • /
    • 2013
  • An adaptive PID sliding mode controller is proposed for the position control of electro-hydrostatic actuator(EHA) systems with system uncertainties and saturation in the motor. An EHA prototype is developed and system modeling and parameter identification are executed. Then, adaptive PID sliding mode controller and optimal anti-windup PID controller are designed and the performance and robustness of the two control systems are compared by experiment. It was found that the adaptive PID sliding mode control system has better performance and is more robust to system uncertainties than the optimal anti-windup PID control system.

Robust $H_\infty$ Control of High-Speed Positioning Systems (고속 위치제어계의 강인 $H_\infty$ 제어)

  • 최진택;김종식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.342-347
    • /
    • 1995
  • Loop shaping $H_{\infty}$control with normalized coprime factorization was applied to a servo-motor driven high-speed powitioning system. The high-gain controller was designed to attenuate the postion errors caused byfriction effects and extermal disturbances. The non-existence of limit cycle was analyzed, though there is actuator saturation. The designed $H_{\infty}$control system was experimently tested in a rotary index table. Results showed its effectiveness to improve postion accuracy with out any compensation scheme for friction, and robustness to model perturbation and external disturbances.ces.

  • PDF

수중운동의 표적추적성능 해석과 제어기 설계

  • 윤강섭;이만형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.330-335
    • /
    • 1995
  • The actuator's response delay, disturbance and measurement noise can often cause a significant error in the target tracking of an underwater vehicle. The first purpose of this paper is error analysis about motion of an underwater vehicle when the closed loop system has actuator and disturbance and noise. The underwater vehicle is simulated for cases of various disturbances. The second purpose is robust controller design for the underwater vehicle with parameter uncertainty. So, two robust control methods are applied for the underwater vehicle. One is standard $H_{\infty}$ control, and the other is time-varying sliding mode control with modified saturation function. Suboptimal design parameters for $H_{\infty}$ control, and design parameters for time-varying switching surfaces are provided Simulations for the two controllers are carried out and their performances are analyzed.lyzed.

  • PDF

ENHANCED FUZZY SLIDING MODE CONTROLLER FOR LAUNCH CONTROL OF AMT VEHICLE USING A BRUSHLESS DC MOTOR DRIVE

  • Zhao, Y.S.;Chen, L.P.;Zhang, Y.Q.;Yang, J.
    • International Journal of Automotive Technology
    • /
    • v.8 no.3
    • /
    • pp.383-394
    • /
    • 2007
  • Due to the clutch's non-linear dynamics, time-delays, external disturbance and parameter uncertainty, the automated clutch is difficult to control precisely during the launch process or automatic mechanical transmission (AMT) vehicles. In this paper, an enhanced fuzzy sliding mode controller (EFSMC) is proposed to control the automated clutch. The sliding and global stability conditions are formulated and analyzed in terms of the Lyapunov full quadratic form. The chattering phenomenon is handled by using a saturation function to replace the pure sign function and fuzzy logic adaptation system in the control law. To meet the real-time requirement of the automated clutch, the region-wise linear technology s adopted to reduce the fuzzy rules of the EFSMC. The simulation results have shown hat the proposed controller can achieve a higher performance with minimum reaching time and smooth control actions. In addition, our data also show that the controller is effective and robust to the parametric variation and external disturbance.

Sliding Mode Control for Improving Performance of Mount with MR(Magneto-Rheological) Fluid (MR마운트 진동제어 성능 향상을 위한 슬라이딩 모드 제어)

  • Ahn, Young Kong;Kim, Sung-Ha;Jeong, Seok-Kwon
    • Journal of Power System Engineering
    • /
    • v.21 no.4
    • /
    • pp.18-25
    • /
    • 2017
  • This paper deals with vibration control of a small mount with MR(Magneto-Rheological) fluid as a functional fluid mount for precision equipment of automobiles. Damping and stiffness coefficients of the mount with MR fluid are changed by variations of the applied magnetic field strength. We present the robust control scheme, based on a conventional sliding mode control theory, for the design of a stable controller that is capable of vibration control due to various disturbances such as impact and periodic excitations, and is insensitive to dynamic properties of the mount. We got stable controller by using Lyapunov stability theory. The controller is then realized by using a semi-active control condition in simulations. Chattering problem of the sliding mode control is eliminated by saturation function instead of signum function. The sliding mode control with Lyapunov stability theory is superior to passive and Sky-Hook control in performance.