• Title/Summary/Keyword: Robust Design and Optimization

Search Result 406, Processing Time 0.025 seconds

Taguchi's Robust Design Method for Optimization of Lysophosphatidic Acid Production in an Open Reactor System

  • Han, Jeong-Jun;Rhee, Joon-Shick
    • Journal of Microbiology and Biotechnology
    • /
    • 제8권1호
    • /
    • pp.81-88
    • /
    • 1998
  • The determination of appropriate parameters and parameter conditions is very important for the optimization of production of target materials. Taguchi's method has been used widely as the basis for development trials and optimization during industrial process design. Reaction variables which influence product yield are easily determined and their effects are revealed by just a few reactions, negating the need for extensive experimental investigation. There are usually some factors that are responsible for variations in process characteristics, so called noise factors. Controlling noise factors is very costly and difficult or impossible. Taguchi's experimental design method was examined to determine the control factor's level that is less sensitive to the changes in environmental conditions and other noise factors without control of noise factors. In this study, optimization of lipase-catalyzed production of lysophosphatidic acid (LPA) which has various physiological functions was performed by Taguchi's method. We obtained LPA yields ($66.5\%$) with low variance (5.32) at 400 RPM, molar ratio of 40 : 3 (mol) (fatty acid: G-3-P), 48 h, and $50^{\circ}C$. Thus, bioactive LPA with a desired fatty acid moiety could be produced with high yields and low variance despite various environmental noise factors.

  • PDF

광 디스크 드라이브의 트랙킹 서보 시스템을 위한 다목적 강인 제어기의 설계 (Design of a Multiobjective Robust Controller for the Track-Following System of an Optical Disk Drive)

  • 이문노;문정호;정명진
    • 제어로봇시스템학회논문지
    • /
    • 제4권5호
    • /
    • pp.592-599
    • /
    • 1998
  • In this paper, we design a tracking controller which satisfies transient response specifications and maintains tracking error within a tolerable limit for the uncertain track-following system of an optical disk drive. To this end, a robust $H_{\infty}$ control problem with regional stability constraints and sinusoidal disturbance rejection is considered. The internal model principle is used for rejecting the sinusoidal disturbance caused by eccentric rotation of the disk. We show that a condition satisfying the regional stability constraints can be expressed in terms of a linear matrix inequality (LMI) using the Lyapunov theory and S-procedure. Finally, a tracking controller is obtained by solving an LMI optimization problem involving two linear matrix inequalities. The proposed controller design method is evaluated through an experiment.

  • PDF

A Study on Simultaneous Optimization of Multiple Quality Characteristics for Robust Design

  • Kwon, Yong Man
    • 품질경영학회지
    • /
    • 제24권2호
    • /
    • pp.142-157
    • /
    • 1996
  • Robust design in industry is an approach to reducing performance variation of quality characteristic values in products and processes. In the Taguchi type robust design, the product array approach using orthogonal arrays is mainly used. However, it often requires an excessive number of experiments. In this paper, for the combined array approach to assign control and noise factors, we propose how to simultaneously optimize multiple quality characteristics. Two examples are illustrated to show the difference between the product-array approach and the combined-array approach.

  • PDF

Robust optimum design of MTMD for control of footbridges subjected to human-induced vibrations via the CIOA

  • Leticia Fleck Fadel Miguel;Otavio Augusto Peter de Souza
    • Structural Engineering and Mechanics
    • /
    • 제86권5호
    • /
    • pp.647-661
    • /
    • 2023
  • It is recognized that the installation of energy dissipation devices, such as the tuned mass damper (TMD), decreases the dynamic response of structures, however, the best parameters of each device persist hard to determine. Unlike many works that perform only a deterministic optimization, this work proposes a complete methodology to minimize the dynamic response of footbridges by optimizing the parameters of multiple tuned mass dampers (MTMD) taking into account uncertainties present in the parameters of the structure and also of the human excitation. For application purposes, a steel footbridge, based on a real structure, is studied. Three different scenarios for the MTMD are simulated. The proposed robust optimization problem is solved via the Circle-Inspired Optimization Algorithm (CIOA), a novel and efficient metaheuristic algorithm recently developed by the authors. The objective function is to minimize the mean maximum vertical displacement of the footbridge, whereas the design variables are the stiffness and damping constants of the MTMD. The results showed the excellent capacity of the proposed methodology, reducing the mean maximum vertical displacement by more than 36% and in a computational time about 9% less than using a classical genetic algorithm. The results obtained by the proposed methodology are also compared with results obtained through traditional TMD design methods, showing again the best performance of the proposed optimization method. Finally, an analysis of the maximum vertical acceleration showed a reduction of more than 91% for the three scenarios, leading the footbridge to acceleration values below the recommended comfort limits. Hence, the proposed methodology could be employed to optimize MTMD, improving the design of footbridges.

Transceiver Optimization for the Multi-Antenna Downlink in MIMO Cognitive System

  • Zhu, Wentao;Yang, Jingbo;Jia, Tingting;Liu, Xu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권12호
    • /
    • pp.5015-5027
    • /
    • 2015
  • Transceiver optimization in multiple input multiple output (MIMO) cognitive systems is studied in this paper. The joint transceiver beamformer design is introduced to minimize the transmit power at secondary base station (SBS) while simultaneously controlling the interference to primary users (PUs) and satisfying the secondary users (SUs) signal-to-interference-plus-noise ratio (SINR) based on the convex optimization method. Due to the limited cooperation between SBS and PUs, the channel state information (CSI) usually cannot be obtained perfectly at the SBS in cognitive system. In this study, both perfect and imperfect CSI scenarios are considered in the beamformer design, and the proposed method is robust to CSI error. Numerical results validate the effectiveness of the proposed algorithm.

다특성 동시최적화를 위한 통합배열과 교차배열 접근의 비교연구 (Combined and Product Array Approaches in Simultaneous Optimization of Multiple Responses)

  • 이재훈;박성현
    • 품질경영학회지
    • /
    • 제34권4호
    • /
    • pp.93-101
    • /
    • 2006
  • Robust parameter design is an off-line production technique for reducing variation and improving the quality of products and processes by using product arrays. However, the use of the product arrays usually requires a large number of runs. To overcome the drawback of the product array, the combined array can be used. Also optimizing multiple responses is increasingly important in industry. Using simultaneous optimization measures, we can deal with the multiple response case. In this paper we compare the simultaneous optimization using the Taguchi's product array with using the combined array. And models possible to set on combined arrays are also investigated and compared with the cases of product arrays.

통합 만족도를 고려한 사출성형공정의 강건 설계 (Robust Design of an Injection Molding Process Considering Integrated Desirability)

  • 김경모;박종천
    • 한국기계가공학회지
    • /
    • 제18권10호
    • /
    • pp.34-41
    • /
    • 2019
  • Warpage and weld line are two major cosmetic defects in the injection molding process. These defects are very sensitive to uncontrollable parameters within the process. The optimization of the design variables can be treated with the use of robust designs. Therefore, in order to minimize the warpage and weld line, a special design method to diminish defects is required. In this study, a new robust design method using designer preference to achieve the optimal robust design conditions in the injection molding process is proposed. The effectiveness of the proposed method is shown with an example of the part of warpage and weld line.

기능창을 이용한 박판성형의 공정 최적화 (Application of Operating Window to Robust Process Optimization of Sheet Metal Forming)

  • 김경모;인정제
    • 한국기계가공학회지
    • /
    • 제8권4호
    • /
    • pp.110-121
    • /
    • 2009
  • It is essential to embed product quality in the design process to win the global competition. Many components found in many products including automobiles and electronic devices are fabricated using sheet metal forming processes. Wrinkle and fracture are two types of defects frequently found in the sheet metal forming process. Reducing such defects is a hard problem as they are affected by many uncontrollable factors. Attempts to solve the problem based on traditional deterministic optimization theories are often led to failures. Furthermore, the wrinkle and fracture are conflicting defects in such a way that reducing one defect leads to increasing the other. Hence, it is a difficult task to reduce both of them at the same time. In this research, a new design method for reducing the rates of conflicting defects under uncontrollable factors is presented by using operating window and a sequential search procedure. A new SN ratio is proposed to overcome the problems of a traditional SN ratio used in the operating window technique. The method is applied to optimizing the robust design of a sheet metal forming process. To show the effectiveness of the proposed method, a comparison is made between the traditional and the proposed methods using simulation software, applied to a design of particular sheet metal forming process problem. The results show that the proposed method always gives a more robust design that is less sensitive to noises than the traditional method.

  • PDF

단순강판형 단면의 최적설계를 위한 효율적인 비선형계획기법 (Efficient NLP Techniques for the Optimum Design of Simple Steel Plate Girder Cross Section)

  • 김종옥
    • 한국농공학회지
    • /
    • 제36권2호
    • /
    • pp.111-122
    • /
    • 1994
  • In this study, an algorithm which can be applied to the optimum design of simple steel plate girders was developed, and efficient optimization strategies for the solution of algorithm were found out. The optimum design algorithm consists of 3-levels of optimization. In the first and second levels of optimization, the absolute maximum bending moment and shearing force are extracted and in the third level of optimization, the optimum cross section of steel plate girder is determined. For the optimum design of cross section, the objective function is formulated as the total area of cross section and constraints are derived in consideration of the various stresses and the minimum dimension of flange and web based on the part of steel bridge in the Korea standard code of road bridge. Sequential unconstrained minimization technique using the exterior penalty function method(SUMT-EP), sequential linear programming(SLP) and sequential quadratic programming (SQP) are proved to be efficient and robust strategies for the optimum design of simple plate girder cross section. From the reliable point of view, SLP is the most efficient and robust strategy and SQP is the most efficient one from the viewpoint of converguency and computing time.

  • PDF

${\mu}$-합성법을 이용한 탐색기 주사루프의 강인 제어 (Robust Control of a Seeker Scan Loop System Using ${\mu}$-Systheis)

  • 이호평
    • 한국정밀공학회지
    • /
    • 제16권3호통권96호
    • /
    • pp.180-188
    • /
    • 1999
  • ${\mu}$-synthesis is applied to design a robust controller for a seeker scan loop system which has model uncertainty and is subject to a external disturbance due to abrupt missile maneuver. The issue of modelling a real-valued parametric uncertainty of a physical seeker scan loop system is discussed. The two-degree-of-frame control structure is employed to obtain better performance. It is shown that ${\mu}$-synthesis provides a superior framework for the robust control design of a seeker scan loop system which exhibits robust performance. The proposed robust control system satisfies design requirements, and especially shows good scanning performances for conical and rosette scan patterns despite parametric uncertainty in real system model.

  • PDF