• Title/Summary/Keyword: Robust Conrol

Search Result 4, Processing Time 0.018 seconds

A Study On The Trajectory Control of A SCARA Robot Using Sliding Mode (슬라이딩모드를 이용한 SCARA 로보트의 궤적제어에 관한 연구)

  • 이민철;진상영;이만형
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.1
    • /
    • pp.99-110
    • /
    • 1995
  • An industrial robot needs a simple and robust control algorithm obtaining high precision control performance in spite of disturbance and parameter's change. In this paper, for solving this problem, a new sliding mode control algorithm is proposed and applied to the trajectory control of a SCARA type robot. The proposed algorithm has diminished the chattering occurring in sliding mode by setting a dead band along the switching line on the phase plane. It shows that we can easily obtain a simple switching control input satisfying sliding mode in spite of regarding nonlinear terms of a manipulator and servo system as disturbance. A guideline for selection of dead-band width is determined by optimal value of cost function presenting magnitudes of chattering and error. By this algorithm, we can expect the high performance of the trajectory tracking of an industrial robot which needs a robust and simple algorithm.

A Study on The Adaptive Robust Servocontroller (견실한 서보적응제어기에 관한 연구)

  • 김종원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.3
    • /
    • pp.513-525
    • /
    • 1990
  • This paper presents Adaptive Robust Servocontrol(ARSC) scheme, which is an explicit(or indirect) pole-assignment adaptive algorithm with the property of "robustness". It guarantees asymptotic regulation and tracking in the presence of finite parameter perturbations of the unknown plant(or process) model. The controller structure is obtained by transforming a robust control theory into an adaptive control version. This controller structure is combined with the model estimation algorithm which includes a dead-zone for bounded noise. It is proved theoretically that this combination of control and identification is globally convergent and stable. It is also shown, through a real-time simulation study, that the desired closed-loop poles of the augmented system can be assigned directly, and that the adjustment mechanism of the scheme tunes the controller parameters according to the assigned closed-loop poles.oop poles.

Pressure Control of a Pneumatic Conrol system with a long Transmission Line (긴 전달관로를 갖는 공압제어계의 압력 제어)

  • Jang, Ji-Seong;Lee, Kwang-Kuk;Choi, Myung-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.4
    • /
    • pp.567-576
    • /
    • 2003
  • In this study, a robust controller to control pressure in a pneumatic pressure vessel with a long transmission line is proposed. Frequency response of transmission line using compressible fluid is changed by the flowing state of the fluid. So, it a fixed gain controller designed based on a model supposed the flowing state to a specific state, the performance of the control system could be degraded because of the modelling error. The controller designed in this study is composed of two parts. One is a feedback controller to improve a feedback characteristics and to compensate the influence of the variation of transfer characteristics of a transmission line owing to the change of flowing state and the other is a feedforward controller to regulate command fallowing performance. The experimental results with the designed controller show that the robustness of the control system is achieved regardless of the change of the model or the transmission line. Therefore, the designed controller can be utilized for the Performance improvement of a Pressure control system with a long transmission line using compressible fluid.

Robust Path Tracking Control for Autonomous Underwater Vehicle with Variable Speed (변속 무인 수중 잠수정을 위한 강인 경로 추적 제어)

  • Choi, Yoon-Ho;Kim, Kyoung-Joo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.4
    • /
    • pp.476-482
    • /
    • 2010
  • In this paper, we propose a robust path tracking control method for autonomous underwater vehicle with variable speed. The proposed path tracking controller consists of a kinematic controller and a dynamic controller. First, the kinematic controller computes the surge speed and yaw rate to follow the reference path with variable speed. Then the dynamic controller controls the thrust force and yaw torque to move the AUV actually. In the dynamic control, we assume that the sway speed is a disturbance. In addition the dynamic controller is designed based on sliding mode conrol. We also demonstrate the stability of the proposed control method by Lyapunov stability theory. Finally, simulation results illustrate the performance of the proposed control method.