• Title/Summary/Keyword: Robust Adaptive Control

Search Result 537, Processing Time 0.035 seconds

A study on the controller design of gun/turret servo system (포/포탑 구동 시스템의 제어기 설계에 관한 연구)

  • 이석재;정오진;이교일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.718-723
    • /
    • 1992
  • A hydraulic gun/turret servo system requires fast and robust controller performance because of severe operating condition and precise target tracking objective. Digital controllers are able to satisfy this requirement due to high speed electronic device. The purpose of this study is to compare with pre-EPU with new-designed optimal, adaptive controllers by simulating nonlinear hydraulic simulation program. The designed digital controller shows good tracking performance and robustness to disturbance.

  • PDF

Robust Control of Current Controlled PWM Rectifiers Using Type-2 Fuzzy Neural Networks for Unity Power Factor Operation

  • Acikgoz, Hakan;Coteli, Resul;Ustundag, Mehmet;Dandil, Besir
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.822-828
    • /
    • 2018
  • AC-DC conversion is a necessary for the systems that require DC source. This conversion has been done via rectifiers based on controlled or uncontrolled semiconductor switches. Advances in the power electronics and microprocessor technologies allowed the use of Pulse Width Modulation (PWM) rectifiers. In this paper, dq-axis current and DC link voltage of three-phase PWM rectifier are controlled by using type-2 fuzzy neural network (T2FNN) controller. For this aim, a simulation model is built by MATLAB/Simulink software. The model is tested under three different operating conditions. The parameters of T2FNN is updated online by using back-propagation algorithm. The results obtained from both T2FNN and Proportional + Integral + Derivate (PID) controller are given for three operating conditions. The results show that three-phase PWM rectifier using T2FNN provides a superior performance under all operating conditions when compared with PID controller.

Adaptive Multi-stream Transmission Technique based on SPIHT Video Signal (SPIHT기반 비디오 신호의 적응적 멀티스트림 전송기법)

  • 강경원;정태일;류권열;권기룡;문광석
    • Journal of Korea Multimedia Society
    • /
    • v.5 no.6
    • /
    • pp.697-703
    • /
    • 2002
  • In this paper, we propose the adaptive multi stream transmission technique based on SPIHT video signal for the highest quality service over the current Internet that does not guarantee QoS. In addition to the reliable transmission of the video stream over the asynchronous packet network, the proposed approach provides the transmission using the adaptive frame pattern control and multi steam over the TCP for continuous replay. The adaptive frame pattern control makes the transmission date scalable in accordance with the client's buffer status. Apart from this, the multi stream transmission improves the efficiency of video stream, and is robust to the network jitter problem, and maximally utilizes the bandwidth of the client's. As a result of the experiment, the DR(delay ratio) in the proposed adaptive multi-stream transmission is more close to zero than in the existing signal stream transmission, which enables the best-efforts service to be implemented.

  • PDF

SPEED-SENSORLESS VECTOR CONTROL OF INDUCTION MOTOR USING MRAS (MRAS를 이용한 유도전동기의 속도센서 없는 벡터제어)

  • Kim, Kwang-Yeon;Cho, Kye-Seok;Hyun, Dong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.148-151
    • /
    • 1991
  • This paper describes the vector control system estimates rotor speed based on MRAS(Model Reference Adaptive Control) and this estimate is used for speed feedback control. The stability of speed estimator is proved on the basis of hyperstability theory. In order to improve the performance of speed control, the load torque is estimated by load torque observer and speed controller compensates this estimate value. Thus the robust vector control system against load torque disturbance is constructed.

  • PDF

Automated Drug Infusion System Based on Fuzzy PID Control during Acute Hypotension

  • Kashihara, Koji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.186-189
    • /
    • 2005
  • In a clinical setting, developing a reliable method for the automated drug infusion system would improve a drug therapy under the unexpected and acute changes of hemodynamics. The conventional proportional-integral-derivative (PID) controller might not be able to achieve maximum performance because of the unexpected change of the intra- and inter-patient variability. The fuzzy PID control and the conventional PID control were tested under the unexpected response of mean arterial blood pressure (MAP) to a vasopressor agent during acute hypotension. Compared with the conventional PID control, the fuzzy PID control performed the robust MAP regulation regardless of the unexpected MAP response (average absolute value of the error between target value and actual MAP: 0.98 vs. 2.93 mmHg in twice response of the expected MAP and 2.59 vs. 9.75 mmHg in three-times response of the expected MAP). The result was due to the adaptive change of the proportional gain in PID parameters.

  • PDF

Position Control of Ball-Screw Systems with Compensation of Estimated Coulomb Friction (추정된 쿨롱 마찰을 보상한 볼-스크류 시스템의 위치제어)

  • Kim, Han-Me;Choi, Jeong-Ju;Lee, Young-Jin;Kim, Jong-Shik
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.893-898
    • /
    • 2003
  • Coulomb friction is an important factor for precise position tracking control systems. The control systems with friction causes the steady state error because of being sensitive to the change of system condition and highly nonlinear characteristics. To overcome these problems, we use an estimation scheme of Coulomb friction to experiment for it's compensating. The estimated factor for Coulomb friction is used as a feed-forward compensator to improve the tracking performance of ball-screw systems. The tracking performance was improved by compensating the estimated friction torque in the feed-forward term. And, the sliding mode control which is derived from the Lyapunov stability theorem is applied for robust stability and reducing chattering. The experimental results show that the sliding mode controller with adaptive friction compensator has a good tracking performance compared with the friction uncompensated controller.

  • PDF

Sensorless Induction Motor Vector Control Using Stator Current-based MRAC (고정자 전류 기반의 모델 기준 적응 제어를 애용한 유도전동기의 센서리스 벡터제어)

  • 박철우;최병태;권우현
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.9
    • /
    • pp.692-699
    • /
    • 2003
  • A novel rotor speed estimation method using Model Reference Adaptive Control(MRAC) is proposed to improve the performance of a sensorless vector controller. In the proposed mettled, the stator current is used as the model variable for estimating the speed. In conventional MRAC methods, the relation between the two model errors and the speed estmation error is unclear. Yet, in the proposed method, the stator current error is represented as a function of the first degree for the error value in the speed estimation. Therefore, the proposed method can produce a fast speed estimation and is robust to the parameters error In addition, the proposed method of offers a considerable improvement in the performance of a sensorless vector controller at a low speed. The superiority of the proposed method is verified by simulation and experiment in a low speed region and at a zero-speed.

Force Synchronizing Control for 4 Axes Driven Hydraulic Cylinder-Clamping Load Systems (4축 구동 유압실린더-클램핑 부하 시스템의 힘 동기제어)

  • Cho, S.H.
    • Journal of Drive and Control
    • /
    • v.11 no.2
    • /
    • pp.9-15
    • /
    • 2014
  • This paper deals with the issue of force synchronizing control for the clamping servomechanism of injection molding machines. Prior to the controller design, a virtual design model has been developed for the clamping mechanism with hydraulic systems. Then, a synchronizing controller is designed and combined with an adaptive feedforward control in order to accommodate the mismatches between the real plant and the linear model plant used. As a disturbance, the leakage due to the ring gap with relative motion in the cylinder has been introduced. From the robust force tracking simulations, it is shown that a significant reduction in the force synchronizing error is achieved through the use of a proposed control scheme.

Depth Controller Design for Submerged Body Moving near Free Surface Based on Adaptive Control (적응제어기법을 이용한 수면근처에서 운항하는 몰수체의 심도제어기 설계)

  • Park, Jong-Yong;Kim, Nakwan;Yoon, Hyeon Kyu;Kim, Su Yong;Cho, Hyeonjin
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.3
    • /
    • pp.270-282
    • /
    • 2015
  • A submerged body moving near the free surface needs to maintain its attitude and position to accomplish missions. It is necessary to validate the performance of a designed controller before a sea trial. The hydrodynamic coefficients of maneuvering are generally obtained by experiments or computational fluid dynamics, but these coefficients have uncertainty. Environmental loads such as the wave exciting force and suction force act on the submerged body when it moves near the free surface. Thus, a controller for the submerged body should be robust to parameter uncertainty and environmental loads. In this paper, the six-degree-of-freedom equations of motions for the submerged body are constructed. The suction force is calculated using the double Rankine body method. An adaptive control method based on an artificial neural network and proportional-integral-derivative control are used for the depth controller. Simulations are performed under various depth and speed conditions, and the results show the effectiveness of the designed controller.

A flexible condition of deadzone estimator for robust system identification (강인한 시스템 식별을 위한 사구간 추정기의 유연한 경계조건)

  • 류시영;이두수
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.4
    • /
    • pp.11-16
    • /
    • 1996
  • This paper proposes a deadzone estimator for robust system identification. In order to cope with the drift phenomena occurred in where system inputs are not sufficiently excited in adaptive control, we introduce a novel and flexible bound condition against a fixed constant. It is derived from a forgetting factor and a rational value of the traces of the covariance matrices between step k and k-1. The key feature of this is that it does not require a priori for the bound. Also, the calculation of it is more simple than the one of literatures. The simulation results are examined for showing the practical performance of this algorithm.

  • PDF