• Title/Summary/Keyword: Robotic planning

Search Result 83, Processing Time 0.025 seconds

A Minimum time trajectory planning for robotic manipulators with input torque constraint (입력 토오크 constraint를 가진 로보트 매니플레이터에 대한 최소 시간 궤적 계획)

  • Hong, In-Keun;Hong, Suk-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.445-449
    • /
    • 1989
  • Achievement of a straight line motion in the Cartesian space has a matter of great importance. Minimization of task execution time with linear interpolation in the joint space, accomplishing of a approximation of straight line motion in the Cartesian coordinate is considered as the prespecified task. Such determination yields minimum time joint-trajectory subject to input torque constraints. The applications of these results for joint-trajectory planning of a two-link manipulator with revolute joints are demonstrated by computer simulations.

  • PDF

A Task Planning System of a Steward Robot with a State Partitioning Technique (상태 분할 기법을 이용한 집사 로봇의 작업 계획 시스템)

  • Kim, Yong-Hwi;Lee, Hyong-Euk;Kim, Heon-Hui;Park, Kwang-Hyun;Bien, Z. Zenn
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.1
    • /
    • pp.23-32
    • /
    • 2008
  • This paper presents a task planning system for a steward robot, which has been developed as an interactive intermediate agent between an end-user and a complex smart home environment called the ISH (Intelligent Sweet Home) at KAIST (Korea Advanced Institute of Science and Technology). The ISH is a large-scale robotic environment with various assistive robots and home appliances for independent living of the elderly and the people with disabilities. In particular, as an approach for achieving human-friendly human-robot interaction, we aim at 'simplification of task commands' by the user. In this sense, a task planning system has been proposed to generate a sequence of actions effectively for coordinating subtasks of the target subsystems from the given high-level task command. Basically, the task planning is performed under the framework of STRIPS (Stanford Research Institute Problem Solver) representation and the split planning method. In addition, we applied a state-partitioning technique to the backward split planning method to reduce computational time. By analyzing the obtained graph, the planning system decomposes an original planning problem into several independent sub-problems, and then, the planning system generates a proper sequence of actions. To show the effectiveness of the proposed system, we deal with a scenario of a planning problem in the ISH.

  • PDF

Dosimetric comparison of volumetric modulated arc therapy with robotic stereotactic radiation therapy in hepatocellular carcinoma

  • Paik, Eun Kyung;Kim, Mi-Sook;Choi, Chul Won;Jang, Won Il;Lee, Sung Hyun;Choi, Sang Hyoun;Kim, Kum Bae;Lee, Dong Han
    • Radiation Oncology Journal
    • /
    • v.33 no.3
    • /
    • pp.233-241
    • /
    • 2015
  • Purpose: To compare volumetric modulated arc therapy of RapidArc with robotic stereotactic body radiation therapy (SBRT) of CyberKnife in the planning and delivery of SBRT for hepatocellular carcinoma (HCC) treatment by analyzing dosimetric parameters. Materials and Methods: Two radiation treatment plans were generated for 29 HCC patients, one using Eclipse for the RapidArc plan and the other using Multiplan for the CyberKnife plan. The prescription dose was 60 Gy in 3 fractions. The dosimetric parameters of planning target volume (PTV) coverage and normal tissue sparing in the RapidArc and the CyberKnife plans were analyzed. Results: The conformity index was $1.05{\pm}0.02$ for the CyberKnife plan, and $1.13{\pm}0.10$ for the RapidArc plan. The homogeneity index was $1.23{\pm}0.01$ for the CyberKnife plan, and $1.10{\pm}0.03$ for the RapidArc plan. For the normal liver, there were significant differences between the two plans in the low-dose regions of $V_1$ and $V_3$. The normalized volumes of $V_{60}$ for the normal liver in the RapidArc plan were drastically increased when the mean dose of the PTVs in RapidArc plan is equivalent to the mean dose of the PTVs in the CyberKnife plan. Conclusion: CyberKnife plans show greater dose conformity, especially in small-sized tumors, while RapidArc plans show good dosimetric distribution of low dose sparing in the normal liver and body.

Sensor-based Motion Planning Algorithm for High-rise Building Facade Cleaning of Built-in Guide Type Multi-Robot (Built-in guide 타입 다중 로봇의 고층 빌딩 외벽 청소를 위한 센서 기반 운동 계획 알고리즘)

  • Lee, Seung-Hoon;Kim, Dong-Hyung;Kang, Min-Sung;Gil, Myung-Soo;Kim, Young-Soo;Back, Sung-Hoon;Han, Chang-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.5
    • /
    • pp.445-452
    • /
    • 2012
  • With the increasing number of high-rise and large-scale buildings, modern buildings are becoming intelligent, and are incurring high construction costs and requiring careful maintenance. Maintenance works for high-rise buildings significantly depend on human labor, unlike other construction processes that are gradually being automated. The resulting accidents may produce very high social and economic losses. To address this problem, herein, this paper proposes robotic building maintenance system using multi-robot concept, in specific, cleaning a building facade which is directly subjected to minimize human labor; that improves the process efficiency and economic feasibility. The sensor for detecting contamination of building's outer-wall glass is proposed; Kalman filter was used for estimating robots' status with the contamination of the window glass. Task allocation of the sensor based multi-robots for an effective way of task execution is introduced and the feasibility was verified through the simulations.

A New Algorithm for Complete Coverage Path-Planning of Cleaning Robots (청소 로봇을 위한 경로 계획의 새로운 알고리즘)

  • Jiang, Liu;Son, Young-Ik;Kim, Kab-Il
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.252-254
    • /
    • 2005
  • Completer coverage path planning requires the robot path to cover every part of the workspace, which is an essential issue in cleaning robots and many other robotic applications such as vacuum robots and painter robots. In this paper, a novel Water Flowing Algorithm (WFA) is proposed for cleaning robots to complete coverage path planning in unknown environment without obstacles. The robot covers the whole workspace just like that water fills up a container. First the robot goes to the lowest point in the workspace just like water flows to the bottom of the container. At last the robot will come to highest point in the workspace just like water overflows from the container and simultaneously the robot has covered the whole workspace. The computer simulation results show that the proposed algorithm enable the robot to plan complete coverage paths.

  • PDF

Path planning in nuclear facility decommissioning: Research status, challenges, and opportunities

  • Adibeli, Justina Onyinyechukwu;Liu, Yong-kuo;Ayodeji, Abiodun;Awodi, Ngbede Junior
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3505-3516
    • /
    • 2021
  • During nuclear facility decommissioning, workers are continuously exposed to high-level radiation. Hence, adequate path planning is critical to protect workers from unnecessary radiation exposure. This work discusses recent development in radioactive path planning and the algorithms recommended for the task. Specifically, we review the conventional methods for nuclear decommissioning path planning, analyze the techniques utilized in developing algorithms, and enumerate the decision factors that should be considered to optimize path planning algorithms. As a major contribution, we present the quantitative performance comparison of different algorithms utilized in solving path planning problems in nuclear decommissioning and highlight their merits and drawbacks. Also, we discuss techniques and critical consideration necessary for efficient application of robots and robotic path planning algorithms in nuclear facility decommissioning. Moreover, we analyze the influence of obstacles and the environmental/radioactive source dynamics on algorithms' efficiency. Finally, we recommend future research focus and highlight critical improvements required for the existing approaches towards a safer and cost-effective nuclear-decommissioning project.

A Study on the Pseudoinverse Kinematic Motion Control of 6-Axis Arc Welding Robot (6축 아크 용접 로보트의 의사 역기구학적 동작 제어에 관한 연구)

  • Choi, Jin-Seob;Kim, Dong-Won;Yang, Sung-Mo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.2
    • /
    • pp.170-177
    • /
    • 1993
  • In robotic arc welding, the roll (rotation) of the torch about its direction vector does not have any effect on the welding operation. Thus we could use this redundant degree of greedom for the motion control of the robot manipulator. This paper presents an algorithm for the pseudo- inverse kinematic motion control of the 6-axis robot, which utilizes the above mentioned redunancy. The prototype welding operation and the tool path are also graphically simulated. Since the proposed algorithm requires only the position and normal vector of the weldine as an input data, it is useful for the CAD-based off-line programming of the arc welding robot. In addition, it also has the advantages of the redundant manipulator motion control, like singularity avoidance and collision free motion planning, when compared with the other motion control method based on the direct inverse kinematics.

  • PDF

A Near Minimum-Time Trajectory Planning for Two Robots Using Dynamic Programming Technique (다이나믹 프로그래밍에 의한 두 대의 로보트를 위한 최소시간 경로계획)

  • 이지홍;오영석
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.11
    • /
    • pp.36-45
    • /
    • 1992
  • A numerical trajectory planning method for path-constrained trajectory planning is proposed which ensures collision-free and time-optimal motions for two robotic manipulators with limited actuator torques and velocities. For each robot, physical constraints of the robots such as limited torques or limited rotational velocities of the actuators are converted to the constraints on velocity and acceleration along the path, which is described by a scalar variable denoting the traveled distance from starting point. Collision region is determined on the coordination space according to the kinematic structures and the geometry of the paths of the robots. An Extended Coordination Space is then constructed` an element of the space determines the postures and the velocities of the robots, and all the constraints described before are transformed to some constraints on the behaviour of the coordination-velocity curves in the space. A dynamic programming technique is them provided with on the discretized Extended Coordination Space to derive a collision-free and time-optimal trajectory pair. Numerical example is included.

  • PDF

A Study of the Path Planning of the Robot Manipulator for Obstacle Avoidance (장애물 회피를 위한 로봇 매니퓰레이터의 경로계획에 관한 연구)

  • 조선휘;류길하
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.98-106
    • /
    • 1991
  • Future generation of robots will be considerably more autonomous than present robotic systems. The main objective of research on theoretical problems in robotics is to endow robotics system with basic capabilities they will need to operate in an intelligent and autonomous manner. This paper discusses the problem of collision free movement of robot manipulator. It is formulated in path planning with obstacle avoidance expressed in the term of the distance between convex shapes in the three dimensional space. The examples are given to illustrate the main feature of the method.

Collision-free Path Planning Using Genetic Algorithm (유전자 알고리즘을 이용한 충돌회피 경로계획)

  • Lee, Dong-Hwan;Zhao, Ran;Lee, Hong-Kyu
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.5
    • /
    • pp.646-655
    • /
    • 2009
  • This paper presents a new search strategy based on models of evolution in order to solve the problem of collision-free robotic path planning. We designed the robot path planning method with genetic algorithm which has become a well-known technique for optimization, intelligent search. Considering the path points as genes in a chromosome will provide a number of possible solutions on a given map. In this case, path distances that each chromosome creates can be regarded as a fitness measure for the corresponding chromosome. The effectiveness of the proposed genetic algorithm in the path planning was demonstrated by simulation. The proposed search strategy is able to use multiple and static obstacles.

  • PDF