• Title/Summary/Keyword: Robotic planning

Search Result 83, Processing Time 0.028 seconds

A Human Robot Interactive System 'RoJi '

  • Yoon, Joongsun
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.11
    • /
    • pp.1900-1908
    • /
    • 2004
  • A human-friendly interactive system that is based on the harmonious symbiotic coexistence of human and robots is explored. Based on interactive technology paradigm, a robotic cane is proposed for blind or visually impaired travelers to navigate safely and quickly through obstacles and other hazards faced by blind pedestrians. Robotic aids, such as robotic canes, require cooperation between human and robots. Various methods for implementing the appropriate cooperative recognition, planning, and acting, have been investigated. The issues discussed include the interaction between humans and robots, design issues of an interactive robotic cane, and behavior arbitration methodologies for navigation planning.

A Prototype of Robotic External Fixation System for Surgery of Bone Deformity Correction

  • Kim, Yoon-Hyuk;Joo, Sang-Min;Lee, Soon-Geul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2448-2450
    • /
    • 2005
  • A robotic external fixation system for the surgery of bone deformity correction was developed to simulate the execution process of mal-unioned femur by the adjustment of the joints of the fixation system. An inverse kinematics analysis algorithm was developed to calculate the necessary rotations and translations at each joint of the robotic system. The computer graphic model was developed for validation of the analysis result and visualization of the surgical process. For given rotational and angular deformity case, the surgical execution process using the robotic system was well matched with the pre-operative planning. The final residual rotational deformities were within $1.0^{\circ}{\sim}1.6^{\circ}$ after surgical correction process. The presented robotic system with computer-aided planning can be useful for knowledge-based fracture treatment and bone deformity correction under external fixation.

  • PDF

Research on Computer-aided and Robotic-assisted Surgery of Fracture Reduction and Bone Deformity Correction under External fixation (외고정법을 이용한 컴퓨터이용 및 로봇지원 골절수술 및 골변형교 정술에 대한 연구)

  • Kim Y.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.131-134
    • /
    • 2005
  • This paper presents a computer-aided simulation and robotic-assisted execution technology of external fixation method to achieve fracture reduction and deformity correction in long bones. Combining the kinematic analysis with a graphic model of the tibia and the fixator allowed 3D simulation and visualization of the adjustments required to reduce fracture or correct bone deformity as a pre-operative planning tool. The developed robot model provided accurate deformity correction with small residual deformity based on the results of the planning. By incorporating the robot model with image-guided system and computer-aided planning, the integrated system could be useful for computer-aided pre-operative planning and robotic-assisted execution in fracture treatment and bone deformity surgery.

  • PDF

Evolution of a Robotic Cane

  • Yoon, Joong-Sun;Kim, Jin-Young
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.5
    • /
    • pp.635-641
    • /
    • 2004
  • A human-friendly interactive system that is based on the harmonious symbiotic coexistence of human and robots is explored. Based on interactive technology paradigm, a robotic cane is proposed for blind or visually impaired travelers to navigate safely and quickly through obstacles and other hazards faced by blind pedestrians. Robotic aids, such as robotic canes, require cooperation between human and robots. Various methods for implementing the appropriate cooperative recognition, planning, and acting, have been investigated. The issues discussed include the interaction of human and robot, design issues of an interactive robotic cane, and behavior arbitration methodologies for navigation planning.

Towards a Ubiquitous Robotic Companion: Design and Implementation of Ubiquitous Robotic Service Framework

  • Ha, Young-Guk;Sohn, Joo-Chan;Cho, Young-Jo;Yoon, Hyun-Soo
    • ETRI Journal
    • /
    • v.27 no.6
    • /
    • pp.666-676
    • /
    • 2005
  • In recent years, motivated by the emergence of ubiquitous computing technologies, a new class of networked robots, ubiquitous robots, has been introduced. The Ubiquitous Robotic Companion (URC) is our conceptual vision of ubiquitous service robots that provide users with the services they need, anytime and anywhere in ubiquitous computing environments. To realize the vision of URC, one of the essential requirements for robotic systems is to support ubiquity of services: that is, a robot service must be always available even though there are changes in the service environments. Specifically robotic systems need to be automatically interoperable with sensors and devices in current service environments, rather than statically preprogrammed for them. In this paper, the design and implementation of a semantic-based ubiquitous robotic space (SemanticURS) is presented. SemanticURS enables automated integration of networked robots into ubiquitous computing environments exploiting Semantic Web Services and AI-based planning technologies.

  • PDF

Efficient Path Planning of a High DOF Multibody Robotic System using Adaptive RRT (Adaptive RRT를 사용한 고 자유도 다물체 로봇 시스템의 효율적인 경로계획)

  • Kim, Dong-Hyung;Choi, Youn-Sung;Yan, Rui-Jun;Luo, Lu-Ping;Lee, Ji Yeong;Han, Chang-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.3
    • /
    • pp.257-264
    • /
    • 2015
  • This paper proposes an adaptive RRT (Rapidly-exploring Random Tree) for path planning of high DOF multibody robotic system. For an efficient path planning in high-dimensional configuration space, the proposed algorithm adaptively selects the robot bodies depending on the complexity of path planning. Then, the RRT grows only using the DOFs corresponding with the selected bodies. Since the RRT is extended in the configuration space with adaptive dimensionality, the RRT can grow in the lower dimensional configuration space. Thus the adaptive RRT method executes a faster path planning and smaller DOF for a robot. We implement our algorithm for path planning of 19 DOF robot, AMIRO. The results from our simulations show that the adaptive RRT-based path planner is more efficient than the basic RRT-based path planner.

A Human Robot Interactive System "RoJi"

  • Shim, In-Bo;Yoon, Joong-Sun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2670-2675
    • /
    • 2003
  • A human-friendly interactive system, based on the harmonious symbiotic coexistence of human and robots, is explored. Based on interactive technology paradigm, a robotic cane is proposed for blind or visually impaired travelers to navigate safely and quickly among obstacles and other hazards faced by blind pedestrians. Robotic aids, such as robotic canes, require cooperation between humans and robots. Various methods for implementing the appropriate cooperative recognition, planning, and acting, have been investigated. The issues discussed include the interaction of human and robot, design issues of an interactive robotic cane, and behavior arbitration methodologies for navigation planning.

  • PDF

A Human Robot Interactive System "RoJi"

  • Shim, Inbo;Yoon, Joongsun;Yoh, Myeungsook
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.3
    • /
    • pp.398-405
    • /
    • 2004
  • A human-friendly interactive system that is based on the harmonious symbiotic coexistence of humans and robots is explored. Based on the interactive technology paradigm, a robotic cane is proposed for blind or visually impaired pedestrians to navigate safely and quickly through obstacles and other hazards. Robotic aids, such as robotic canes, require cooperation between humans and robots. Various methods for implementing the appropriate cooperative recognition, planning, and acting, have been investigated. The issues discussed include the interaction between humans and robots, design issues of an interactive robotic cane, and behavior arbitration methodologies for navigation planning.

Development of Sensor-based Motion Planning Method for an Autonomous Navigation of Robotic Vehicles (로봇형 차량의 자율주행을 위한 센서 기반 운동 계획법 개발)

  • Kim, Dong-Hyung;Kim, Chang-Jun;Lee, Ji-Yeong;Han, Chang-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.6
    • /
    • pp.513-520
    • /
    • 2011
  • This paper presents the motion planning of robotic vehicles for the path tracking and the obstacle avoidance. To follow the given path, the vehicle moves through the turning radius obtained through the pure pursuit method, which is a geometric path tracking method. In this paper, we assume that the vehicle is equipped with a 2D laser scanner, allowing it to avoid obstacles within its sensing range. The turning radius for avoiding the obstacle, which is inversely proportional to the virtual force, is then calculated. Therefore, these two kinds of the turning radius are used to generate the steering angle for the front wheel of the vehicle. And the vehicle reduces the velocity when it meets the obstacle or the large steering angle using the potentials of obstacle points and the steering angle. Thus the motion planning of the vehicle is done by planning the steering angle for the front wheels and the velocity. Finally, the performance of the proposed method is tested through simulation.

Minimum time path planning of robotic manipulator in drilling/spot welding tasks

  • Zhang, Qiang;Zhao, Ming-Yong
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.2
    • /
    • pp.132-139
    • /
    • 2016
  • In this paper, a minimum time path planning strategy is proposed for multi points manufacturing problems in drilling/spot welding tasks. By optimizing the travelling schedule of the set points and the detailed transfer path between points, the minimum time manufacturing task is realized under fully utilizing the dynamic performance of robotic manipulator. According to the start-stop movement in drilling/spot welding task, the path planning problem can be converted into a traveling salesman problem (TSP) and a series of point to point minimum time transfer path planning problems. Cubic Hermite interpolation polynomial is used to parameterize the transfer path and then the path parameters are optimized to obtain minimum point to point transfer time. A new TSP with minimum time index is constructed by using point-point transfer time as the TSP parameter. The classical genetic algorithm (GA) is applied to obtain the optimal travelling schedule. Several minimum time drilling tasks of a 3-DOF robotic manipulator are used as examples to demonstrate the effectiveness of the proposed approach.