• 제목/요약/키워드: Robot-Arm Control

검색결과 402건 처리시간 0.021초

로봇-보조 팔 훈련이 뇌졸중 환자의 팔에 근활성도와 체중지지에 미치는 영향 (Effects of Robot-Assisted Arm Training on Muscle Activity of Arm and Weight Bearing in Stroke Patients)

  • 양대중;이용선
    • 대한정형도수물리치료학회지
    • /
    • 제28권1호
    • /
    • pp.71-80
    • /
    • 2022
  • Background: This study investigated the effect of robot-assisted arm training on muscle activity of arm and weight bearing in stroke patients. Methods: The study subjects were selected 20 stroke patients who met the selection criteria. 10 people in the robot-assisted arm training group and 10 people in the task-oriented arm training group were randomly assigned. The experimental group performed robot-assisted arm training, and the control group performed task-oriented arm training for 6 weeks, 5 days a week, 30 minutes a day. The measurement tools included surface electromyography and smart insole system. Data were analyzed using independent sample t-test and the paired sample t-test. Results: Comparing the muscle activity of arm within the group, the experimental group and the control group showed significant differences in muscle activity in the biceps brachii, triceps brachii, anterior deltoid, upper trapezius, middle trapezius, and lower trapezius. Comparing the muscle activity of arms between the groups, the experimental group showed significant difference in all muscle activity of arm compared to the control group. Comparing the weight bearing within the groups, the experimental group showed significant difference in the affected side and non-affected side weight bearings and there were significant differences in anterior and posterior weight bearing. The control group showed significant difference only in the non-affected side weight bearing. Comparing the weight bearings between groups, the experimental group showed significant difference in the affected side and non-affected side weight bearings compared to the control group. Conclusion: This study confirmed that robot-assisted arm training applied to stroke patients for 6 weeks significantly improved muscle activity of arm and weight bearing. Based on these results, it is considered that robot-assisted arm training can be a useful treatment in clinical practice to improve the kinematic variables in chronic stroke patients.

힘 제어 기반의 로봇 팔과 인간 팔의 상호 작용을 위한 임베디드 시스템 설계 (Implementation of an Embedded System for an Interaction between Robot Arm and Human Arm Based on Force Control)

  • 전효원;정슬
    • 제어로봇시스템학회논문지
    • /
    • 제15권11호
    • /
    • pp.1096-1101
    • /
    • 2009
  • In this paper, an embedded system has been designed for force control application to interact between a robot arm and a human operator. Force induced by the human operator is converted to the desired position information for the robot to follow. For smooth operations, the impedance force control algorithm is utilized to represent interaction between the robot and the human operator by filtering the force. To improve the performance of position control of the robot arm, a velocity term has been obtained and tested by several filters. A PD controller for position control has been implemented on an FPGA as well. Experimental studies are conducted with the ROBOKER to test the functionality of the designed hardware.

퍼지제어와 성능함수 최적화를 이용한 여유자유도 로봇 팔의 장애물 우회 알고리즘 (An Obstacle-Avoidance Algorithm for a Redundant Robot Arm Using Fuzzy Control and Performance-Function Optimization)

  • 이병룡;황재석;박찬호;양순용;안경관
    • 한국정밀공학회지
    • /
    • 제19권4호
    • /
    • pp.187-194
    • /
    • 2002
  • In this paper, a motion control algorithm is developed using a fuzzy control and the optimization of performance function, which makes a robot arm avoid an unexpected obstacle when the end-effector of the robot arm is moving to the goal position. During talc motion, if there exists no obstacle, the end-effector of the robot arm moves along the predefined path. But if these exists an obstacle and close to talc robot arm, the fuzzy motion controller is activated to adjust the path of the end-effector of the robot arm. Then, the robot arm takes the optimal posture far collision avoidance with the obstacle. To show the feasibility of the developed algorithm, numerical simulations are carried out with changing both the positions and sites of obstacles. It was concluded that the proposed algorithm gives a good performance for obstacle avoidance.

팔 동작 움직임을 모사하는 와이어 구동 유연 로봇의 설계 및 제어 (Design and Control of Wire-driven Flexible Robot Following Human Arm Gestures)

  • 김상현;김민효;강준기;손승제;김동환
    • 로봇학회논문지
    • /
    • 제14권1호
    • /
    • pp.50-57
    • /
    • 2019
  • This work presents a design and control method for a flexible robot arm operated by a wire drive that follows human gestures. When moving the robot arm to a desired position, the necessary wire moving length is calculated and the motors are rotated accordingly to the length. A robotic arm is composed of a total of two module-formed mechanism similar to real human motion. Two wires are used as a closed loop in one module, and universal joints are attached to each disk to create up, down, left, and right movements. In order to control the motor, the anti-windup PID was applied to limit the sudden change usually caused by accumulated error in the integral control term. In addition, master/slave communication protocol and operation program for linking 6 motors to MYO sensor and IMU sensor output were developed at the same time. This makes it possible to receive the image information of the camera attached to the robot arm and simultaneously send the control command to the robot at high speed.

재난 대응 특수목적기계의 양팔작업기 제어전략 및 검증 (Control Strategy and Verification of Dual-Arm Manipulator for Disaster-Responding Special Purpose Machinery)

  • 김진탁;박상신;한상철;김진현;조정산
    • 드라이브 ㆍ 컨트롤
    • /
    • 제17권4호
    • /
    • pp.31-37
    • /
    • 2020
  • We are concerned with the dual-arm manipulation for disaster-responding special-purpose machinery. This paper presents a control strategy for performing complex work in an irregular environment, the control algorithm, the hydraulic circuit, and the master devices. The occurrence of collapse accidents at disaster sites such as natural disasters and building collapses is increasing, which is emerging as a social problem. In particular, for the initial response, various tasks must be performed in an irregular environment. The Marionette algorithm for intuitive control of 'as if the operator's arm is moving' was presented as a control strategy for dual-arm manipulators with attachments and the prototype. Next, the hydraulic circuit, control system, and wearable-type master device presented to implement the Marionette algorithm were explained and verified through an experiment in which rebar-cutting, drum-lifting, and lifting a bottle with one arm and pouring the water into the bucket with the other arm were tested.

재난 탐사 및 구조를 위한 로봇팔 설계 및 제어 (Design and Control of Robot Arm for Inspection and Rescue Operations)

  • 강진일;최형식;전봉환;지대형;오지윤;김준영
    • 제어로봇시스템학회논문지
    • /
    • 제22권11호
    • /
    • pp.888-894
    • /
    • 2016
  • This paper presents the kinematic and dynamic analysis of the robot arm for inspection and rescue operations. The inspection robot arm has Pitch-Pitch-Pitch-Yaw motion for an optimal and stable view of the camera installed at the end of the manipulator. The rescue operation robot arm has Yaw-Pitch-Pitch-Roll motion to handle heavy tools. Additionally, both robot arms are waterproof, as they use the triple-layer O-ring. Furthermore, the dynamic equation including the damping force due to the mechanical seal for waterproofness was derived by using the Newton-Euler method. A control system using the ARM processor was developed and introduced in this paper, and its performance was verified through experiments.

WHILE 언어를 사용한 32비트(MC 68020) CPU제어기에 대한 직접구동방식 로보트의 제어소프트웨어 개발 (Control software development for direct drive arm robot using 32bit(MC68020) CPU with WHILE language)

  • 이주장;신은주;곽윤근
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1989년도 한국자동제어학술회의논문집; Seoul, Korea; 27-28 Oct. 1989
    • /
    • pp.239-243
    • /
    • 1989
  • This paper represents the control software development for Direct Drive Arm Robot with the WHILE language composed the 68000 assembly language and high level language modula-2. Direct Drive Ann Robot needs the control program which is fast step and exactly position moving because Direct Drive Arm Robt depends on accuracy. We found that the self-tuning algorithm for this robot control is very good for the real time control and the floating point operation using the 32 bit CPU(MC 68020) controller.

  • PDF

링크 암에 대한 비선형 변환 제어 이론의 응용 연구 (Application Study of Nonlinear Transformation Control Theory for Link Arm System)

  • 백윤수;양창일
    • 한국정밀공학회지
    • /
    • 제13권2호
    • /
    • pp.94-101
    • /
    • 1996
  • The equations of motion for a basic industrial robotic system which has a rigid or a flexible arm are derived by Lagrange's equation, respectively. Especially, for the deflection of the flexible arm, the assumed mode method is employed. These equations are highly nonlinear equations with nonlinear coupling between the variables of motion. In order to design the control law for the rigid-arm robot, Hunt-Su's nonlinear transformation method and Marino's feedback equivalence condition are used with linear quadratic regulator(LQR) theory. The control law for the rigid-arm robot is employed to input the desired path and to provide the required nonlinear transformations for the flexible-arm robot to follow. By using the implicit Euler method to solve the nonlinear equations, the comparison of the motions between the flexible and the rigid robots and the effect of flexibility are examined.

  • PDF

Wearable Robot Arm의 제작 및 제어 (Design and Control of a Wearable Robot)

  • 정연구;김윤경;김경환;박종오
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집B
    • /
    • pp.277-282
    • /
    • 2001
  • As human-friendly robot techniques improve, the concept of the wearability of robotic arms becomes important. A master arm that detects human arm motion and provides virtual forces to the operator is an embodied concept of a wearable robotic arm. In this study, we design a 7 DOF wearable robotic arm with high joint torques. An operator wearing this robotic arm can move around freely because this robotic arm was designed to have its fixed point at the shoulder part of the operator. The proposed robotic arm uses parallel mechanisms at the shoulder part and the wrist part on the model of the human muscular structure of an upper limb. To reduce the computational load in solving the forward kinematics and to prevent singularity motions of the parallel mechanism, yawing motion of the parallel mechanisms was separated using a slip ling mechanism. The total weight of the proposed robotic arm is about 4 kg. An experimental result of force tracking test for the pneumatic control system and an application example for VR robot are described to show the validity of the robot.

  • PDF

산업용 로봇 팔 제어를 위한 마스터 암 설계 및 제어 (Design and Control of the Master Arm for Control of Industrial Robot Arm)

  • 지대형;전지혜;강현승;최형식
    • 한국정밀공학회지
    • /
    • 제32권12호
    • /
    • pp.1055-1063
    • /
    • 2015
  • In this paper, a new master arm was developed as an input device of the remote control system for easy control of the industrial robot arm; it has a structure similar to the robot arm and is easy to wear. For control of the slave arm, related equations were derived about the joints between the master and slave arm; and thereby using them, the master arm control system was developed. Furthermore, a control simulator was developed for the convenient and accurate control of the slave arm. Experiments, about controlling the slave arm in applying the master arm, were performed to validate the developed simulator and the derived related equations.