• Title/Summary/Keyword: Robot structure

Search Result 913, Processing Time 0.028 seconds

A deep learning framework for wind pressure super-resolution reconstruction

  • Xiao Chen;Xinhui Dong;Pengfei Lin;Fei Ding;Bubryur Kim;Jie Song;Yiqing Xiao;Gang Hu
    • Wind and Structures
    • /
    • v.36 no.6
    • /
    • pp.405-421
    • /
    • 2023
  • Strong wind is the main factors of wind-damage of high-rise buildings, which often creates largely economical losses and casualties. Wind pressure plays a critical role in wind effects on buildings. To obtain the high-resolution wind pressure field, it often requires massive pressure taps. In this study, two traditional methods, including bilinear and bicubic interpolation, and two deep learning techniques including Residual Networks (ResNet) and Generative Adversarial Networks (GANs), are employed to reconstruct wind pressure filed from limited pressure taps on the surface of an ideal building from TPU database. It was found that the GANs model exhibits the best performance in reconstructing the wind pressure field. Meanwhile, it was confirmed that k-means clustering based retained pressure taps as model input can significantly improve the reconstruction ability of GANs model. Finally, the generalization ability of k-means clustering based GANs model in reconstructing wind pressure field is verified by an actual engineering structure. Importantly, the k-means clustering based GANs model can achieve satisfactory reconstruction in wind pressure field under the inputs processing by k-means clustering, even the 20% of pressure taps. Therefore, it is expected to save a huge number of pressure taps under the field reconstruction and achieve timely and accurately reconstruction of wind pressure field under k-means clustering based GANs model.

Interactive Motion Retargeting for Humanoid in Constrained Environment (제한된 환경 속에서 휴머노이드를 위한 인터랙티브 모션 리타겟팅)

  • Nam, Ha Jong;Lee, Ji Hye;Choi, Myung Geol
    • Journal of the Korea Computer Graphics Society
    • /
    • v.23 no.3
    • /
    • pp.1-8
    • /
    • 2017
  • In this paper, we introduce a technique to retarget human motion data to the humanoid body in a constrained environment. We assume that the given motion data includes detailed interactions such as holding the object by hand or avoiding obstacles. In addition, we assume that the humanoid joint structure is different from the human joint structure, and the shape of the surrounding environment is different from that at the time of the original motion. Under such a condition, it is also difficult to preserve the context of the interaction shown in the original motion data, if the retargeting technique that considers only the change of the body shape. Our approach is to separate the problem into two smaller problems and solve them independently. One is to retarget motion data to a new skeleton, and the other is to preserve the context of interactions. We first retarget the given human motion data to the target humanoid body ignoring the interaction with the environment. Then, we precisely deform the shape of the environmental model to match with the humanoid motion so that the original interaction is reproduced. Finally, we set spatial constraints between the humanoid body and the environmental model, and restore the environmental model to the original shape. To demonstrate the usefulness of our method, we conducted an experiment by using the Boston Dynamic's Atlas robot. We expected that out method can help the humanoid motion tracking problem in the future.

A Study on the Development of an Automated Freeform Fabrication System and Construction Materials (자동화 적층 시공 시스템 및 재료 개발에 관한 연구)

  • Jeon, Kwang Hyun;Park, Min-Beom;Kang, Min-Kyung;Kim, Jung-Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1665-1673
    • /
    • 2013
  • Recently, the interest and demand on free formed structure providing aesthetic value as well as functionality has been increasing. Formwork has numerous advantages such as high strength, convenience, accuracy and good quality of surface roughness. Nevertheless, it increases construction cost and period to build complex shapes. For these purpose, deposition construction systems such as Contour Crafting and Concrete Printing have been developed with active collaboration between university and industry by applying the rapid prototyping technology to the construction industry in USA and England. Since there has been no related research in Korea, the possibility of spin-off technology and its fusion cannot be expected. In this paper, design elements including mechanical system and control system related to automatic deposition construction system prototype for constructing a free curved structure without mold are described. As for an appropriate material for the system, fiber reinforced mortar was selected by experiments on compressive strength, fluidity, viscosity and setting time. By performing transfer and extrusion experiments, the possibility of the development of deposition construction system was demonstrated. Based on this research results, it is required to keep the automatic deposition construction system improve and extend it into the new application area in construction industry.

SLAM Method by Disparity Change and Partial Segmentation of Scene Structure (시차변화(Disparity Change)와 장면의 부분 분할을 이용한 SLAM 방법)

  • Choi, Jaewoo;Lee, Chulhee;Eem, Changkyoung;Hong, Hyunki
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.8
    • /
    • pp.132-139
    • /
    • 2015
  • Visual SLAM(Simultaneous Localization And Mapping) has been used widely to estimate a mobile robot's location. Visual SLAM estimates relative motions with static visual features over image sequence. Because visual SLAM methods assume generally static features in the environment, we cannot obtain precise results in dynamic situation including many moving objects: cars and human beings. This paper presents a stereo vision based SLAM method in dynamic environment. First, we extract disparity map with stereo vision and compute optical flow. We then compute disparity change that is the estimated flow field between stereo views. After examining the disparity change value, we detect ROIs(Region Of Interest) in disparity space to determine dynamic scene objects. In indoor environment, many structural planes like walls may be determined as false dynamic elements. To solve this problem, we segment the scene into planar structure. More specifically, disparity values by the stereo vision are projected to X-Z plane and we employ Hough transform to determine planes. In final step, we remove ROIs nearby the walls and discriminate static scene elements in indoor environment. The experimental results show that the proposed method can obtain stable performance in dynamic environment.

Evolution of Neural Network's Structure and Learn Patterns Based on Competitive Co-Evolutionary Method (경쟁적 공진화법에 의한 신경망의 구조와 학습패턴의 진화)

  • Joung, Chi-Sun;Lee, Dong-Wook;Jun, Hyo-Byung;Sim, Kwee-Bo
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.1
    • /
    • pp.29-37
    • /
    • 1999
  • In general, the information processing capability of a neural network is determined by its architecture and efficient training patterns. However, there is no systematic method for designing neural network and selecting effective training patterns. Evolutionary Algorithms(EAs) are referred to as the methods of population-based optimization. Therefore, EAs are considered as very efficient methods of optimal system design because they can provide much opportunity for obtaining the global optimal solution. In this paper, we propose a new method for finding the optimal structure of neural networks based on competitive co-evolution, which has two different populations. Each population is called the primary population and the secondary population respectively. The former is composed of the architecture of neural network and the latter is composed of training patterns. These two populations co-evolve competitively each other, that is, the training patterns will evolve to become more difficult for learning of neural networks and the architecture of neural networks will evolve to learn this patterns. This method prevents the system from the limitation of the performance by random design of neural networks and inadequate selection of training patterns. In co-evolutionary method, it is difficult to monitor the progress of co-evolution because the fitness of individuals varies dynamically. So, we also introduce the measurement method. The validity and effectiveness of the proposed method are inspected by applying it to the visual servoing of robot manipulators.

  • PDF

Recent Advances on TENG-based Soft Robot Applications (정전 발전 기반 소프트 로봇 응용 최신 기술)

  • Zhengbing, Ding;Dukhyun, Choi
    • Composites Research
    • /
    • v.35 no.6
    • /
    • pp.378-393
    • /
    • 2022
  • As an emerging power generation technology, triboelectric nanogenerators (TENGs) have received increasing attention due to their boundless promise in energy harvesting and self-powered sensing applications. The recent rise of soft robotics has sparked widespread enthusiasm for developing flexible and soft sensors and actuators. TENGs have been regarded as promising power sources for driving actuators and self-powered sensors, providing a unique approach for the development of soft robots with soft sensors and actuators. In this review, TENG-based soft robots with different morphologies and different functions are introduced. Among them, the design of biomimetic soft robots that imitate the structure, surface morphology, material properties, and sensing/generating mechanisms of nature has greatly benefited in improving the performance of TENGs. In addition, various bionic soft robots have been well improved compared to previous driving methods due to the simple structure, self-powering characteristics, and tunable output of TENGs. Furthermore, we provide a comprehensive review of various studies within specific areas of TENG-enabled soft robotics applications. We first explore various recently developed TENG-based soft robots and a comparative analysis of various device structures, surface morphologies, and nature-inspired materials, and the resulting improvements in TENG performance. Various ubiquitous sensing principles and generation mechanisms used in nature and their analogous artificial TENG designs are demonstrated. Finally, biomimetic applications of TENG enabled in tactile displays as well as in wearable devices, artificial electronic skin and other devices are discussed. System designs, challenges and prospects of TENGs-based sensing and actuation devices in the practical application of soft robotics are analyzed.

VKOSPI Forecasting and Option Trading Application Using SVM (SVM을 이용한 VKOSPI 일 중 변화 예측과 실제 옵션 매매에의 적용)

  • Ra, Yun Seon;Choi, Heung Sik;Kim, Sun Woong
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.4
    • /
    • pp.177-192
    • /
    • 2016
  • Machine learning is a field of artificial intelligence. It refers to an area of computer science related to providing machines the ability to perform their own data analysis, decision making and forecasting. For example, one of the representative machine learning models is artificial neural network, which is a statistical learning algorithm inspired by the neural network structure of biology. In addition, there are other machine learning models such as decision tree model, naive bayes model and SVM(support vector machine) model. Among the machine learning models, we use SVM model in this study because it is mainly used for classification and regression analysis that fits well to our study. The core principle of SVM is to find a reasonable hyperplane that distinguishes different group in the data space. Given information about the data in any two groups, the SVM model judges to which group the new data belongs based on the hyperplane obtained from the given data set. Thus, the more the amount of meaningful data, the better the machine learning ability. In recent years, many financial experts have focused on machine learning, seeing the possibility of combining with machine learning and the financial field where vast amounts of financial data exist. Machine learning techniques have been proved to be powerful in describing the non-stationary and chaotic stock price dynamics. A lot of researches have been successfully conducted on forecasting of stock prices using machine learning algorithms. Recently, financial companies have begun to provide Robo-Advisor service, a compound word of Robot and Advisor, which can perform various financial tasks through advanced algorithms using rapidly changing huge amount of data. Robo-Adviser's main task is to advise the investors about the investor's personal investment propensity and to provide the service to manage the portfolio automatically. In this study, we propose a method of forecasting the Korean volatility index, VKOSPI, using the SVM model, which is one of the machine learning methods, and applying it to real option trading to increase the trading performance. VKOSPI is a measure of the future volatility of the KOSPI 200 index based on KOSPI 200 index option prices. VKOSPI is similar to the VIX index, which is based on S&P 500 option price in the United States. The Korea Exchange(KRX) calculates and announce the real-time VKOSPI index. VKOSPI is the same as the usual volatility and affects the option prices. The direction of VKOSPI and option prices show positive relation regardless of the option type (call and put options with various striking prices). If the volatility increases, all of the call and put option premium increases because the probability of the option's exercise possibility increases. The investor can know the rising value of the option price with respect to the volatility rising value in real time through Vega, a Black-Scholes's measurement index of an option's sensitivity to changes in the volatility. Therefore, accurate forecasting of VKOSPI movements is one of the important factors that can generate profit in option trading. In this study, we verified through real option data that the accurate forecast of VKOSPI is able to make a big profit in real option trading. To the best of our knowledge, there have been no studies on the idea of predicting the direction of VKOSPI based on machine learning and introducing the idea of applying it to actual option trading. In this study predicted daily VKOSPI changes through SVM model and then made intraday option strangle position, which gives profit as option prices reduce, only when VKOSPI is expected to decline during daytime. We analyzed the results and tested whether it is applicable to real option trading based on SVM's prediction. The results showed the prediction accuracy of VKOSPI was 57.83% on average, and the number of position entry times was 43.2 times, which is less than half of the benchmark (100 times). A small number of trading is an indicator of trading efficiency. In addition, the experiment proved that the trading performance was significantly higher than the benchmark.

Study on Structural Integrity and Dynamic Characteristics of Knuckle Parts of KTX Anti-Roll Bar (KTX 고속열차 안티롤바 너클부의 동특성 및 구조 안전성 평가)

  • Jeon, Kwang Woo;Shin, Kwang Bok;Kim, Jin Woo;Jeong, Yeon Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.8
    • /
    • pp.1035-1041
    • /
    • 2013
  • To evaluate the structural integrity and dynamic characteristic of the knuckle part of a KTX anti-roll bar, an experimental and a numerical approach were used in this study. In the experimental approach, the acceleration and strain data for the knuckle parts of the KTX and KTX-SANCHUN anti-roll bar were respectively measured to evaluate and compare its structural dynamic characteristics under the operating environments of the Honam line. In the numerical approach, the evaluation of its structural integrity was conducted using LS-DYNA 3D, and then, the reliability of the finite element model used was ensured by a comparative evaluation with the experiment. The numerical results showed that the stress and velocity field of the knuckle part composed of a layered structure of a thin steel plate and rubber were more moderate than those of the knuckle part made of only a thick steel block owing to the reduction of relative contact between the knuckle and the connecting rod. It was found that the knuckle part made of a thin steel plate and rubber was recommended as the best solution to improve its structural integrity resulting from the elastic behavior of the KTX anti-roll bar being enabled under a repeating external force.

Development of Chip-based Precision Motion Controller

  • Cho, Jung-Uk;Jeon, Jae-Wook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1022-1027
    • /
    • 2003
  • The Motion controllers provide the sophisticated performance and enhanced capabilities we can see in the movements of robotic systems. Several types of motion controllers are available, some based on the kind of overall control system in use. PLC (Programmable Logic Controller)-based motion controllers still predominate. The many peoples use MCU (Micro Controller Unit)-based board level motion controllers and will continue to in the near-term future. These motion controllers control a variety motor system like robotic systems. Generally, They consist of large and complex circuits. PLC-based motion controller consists of high performance PLC, development tool, and application specific software. It can be cause to generate several problems that are large size and space, much cabling, and additional high coasts. MCU-based motion controller consists of memories like ROM and RAM, I/O interface ports, and decoder in order to operate MCU. Additionally, it needs DPRAM to communicate with host PC, counter to get position information of motor by using encoder signal, additional circuits to control servo, and application specific software to generate a various velocity profiles. It can be causes to generate several problems that are overall system complexity, large size and space, much cabling, large power consumption and additional high costs. Also, it needs much times to calculate velocity profile because of generating by software method and don't generate various velocity profiles like arbitrary velocity profile. Therefore, It is hard to generate expected various velocity profiles. And further, to embed real-time OS (Operating System) is considered for more reliable motion control. In this paper, the structure of chip-based precision motion controller is proposed to solve above-mentioned problems of control systems. This proposed motion controller is designed with a FPGA (Field Programmable Gate Arrays) by using the VHDL (Very high speed integrated circuit Hardware Description Language) and Handel-C that is program language for deign hardware. This motion controller consists of Velocity Profile Generator (VPG) part to generate expected various velocity profiles, PCI Interface part to communicate with host PC, Feedback Counter part to get position information by using encoder signal, Clock Generator to generate expected various clock signal, Controller part to control position of motor with generated velocity profile and position information, and Data Converter part to convert and transmit compatible data to D/A converter.

  • PDF

Analysis of use and satisfaction factors through Domestic Character Preference Survey - Focused on Storytelling and Design - (국내 캐릭터 선호도 조사를 통한 이용충족 분석연구 -스토리텔링과 디자인을 중심으로-)

  • Lee, Jong-yoon;Eune, Ju-hyun
    • Cartoon and Animation Studies
    • /
    • s.47
    • /
    • pp.381-412
    • /
    • 2017
  • Character conveys rich storytelling and various design elements. Domestic characters are changing and developing in various forms through SNS and offline sources, which are being developed in the aspect of contents industry. The purpose of this study is to find out and discuss the factors that character users are using Korean characters as storytelling and color factor. In terms of storytelling, they prefer adventure, fantasy, absurd and humorous stories. In terms of color, it seems that they prefer a character with simple and simple color/ warm color and warm / cute color composition. On the other hand, characters with a simple story, which is the main subject of early childhood education, fashion, or toys in the aspect of storytelling, are not preferred. In terms of color, it was shown that 4 or more colors were combined without a main color. These main colorless characters gave complex feelings that are not preferred. In terms of storytelling, it is necessary to develop and develop the contents of OSMU(One-source Multi use) through story development with adventure and fantasy structure. In terms of color, it is necessary to configure the user with a simple and simple color which is preferred by the users. Also, the assembly robot toy character needs to increase the satisfaction of the character through simple color composition. As a result of this study, the factors that satisfy the users in terms of storytelling and color are derived. These results will contribute to the development of theoretical aspects, storytelling aspects, and character design industry aspects. Despite the significance of the above paper, it was inevitable to limit the research on the analysis of the storytelling of specific characters, the research through the color analysis framework, the accurate data analysis on the color analysis, and the simple comparative analysis of one.