• Title/Summary/Keyword: Robot structure

Search Result 906, Processing Time 0.024 seconds

Adaptive Control of Robot Manipulators using Modified Feedback Neural Network (변형된 궤환형 신경회로망을 이용한 로봇 매니퓰레이터 적응 제어 방식)

  • Jung, Kyung-Kwon;Lee, In-Jae;Lee, Sung-Hyun;Gim, Ine;Chung, Sung-Boo;Eom, Ki-Hwan
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.1021-1024
    • /
    • 1999
  • In this paper, we propose a modified feedback neural network structure for adaptive control of robot manipulators. The proposed structure is that all of network output feedback into hidden units and output units. Learning algorithm is standard back-propagation algorithm. The simulation showed the effectiveness of using the new neural network structure in the adaptive control of robot manipulators.

  • PDF

A Study on Implementation of Environment Monitoring System of Mobile Robot using OpenRTM (OpenRTM 기술을 이용한 이동로봇 환경 모니터닝 시스템 구현에 관한 연구)

  • Moon, Yong-Seomn;Vo, Trong Tuan Anh;Lee, Young-Pil;Park, Jong-Kyu;Bae, Young-Chul
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.6
    • /
    • pp.894-900
    • /
    • 2009
  • In this paper, we propose the structure of system integration on the global ethernet networks using OpenRTM which was developed in Japan among the integration software framework based on middleware. In order to verify for propose model, we implement of environment monitoring system of mobile robot applied OpenRTM structure and we also verify that proposed validity of the structure of integration through experiment in the implemented system.

  • PDF

Flow and Structural Analysis at Welding Fume of Automatic Gantry Robot - CFD/CAE and Automatic Convergence Study - (자동 겐트리 로봇의 용접 흄 유동 및 구조해석 - CFD/CAE 및 자동화 융합 연구 -)

  • Jang, Sung-Chul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.6
    • /
    • pp.158-163
    • /
    • 2012
  • This study investigates numerical analysis for robot welder fume flow and gantry structure. The solvers are STAR-CCM+ and ANSYS workbench used on flow and structural analysis. The results show that fume is diffused in factory when the welding fume is remove at dust collector. But dust collector intercepts the fume diffusion into workroom by removing most of welding fume. Structure analysis result shows that the reinforcement rod is evaluated to main the safety by supporting sufficient structure.

A Hexapod Robot that can Walk Fast (빠른 보행이 가능한 6족 로봇)

  • Seo, Hyeon Se;Sung, Young Whee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.4
    • /
    • pp.536-543
    • /
    • 2013
  • In this paper, we propose a new type of hexapod robot that can walk fast. Most of the conventional hexapod robots are either rectangular type of hexagonal type. Those robots have drawbacks in the speed and stability of walking. The proposed robot has six legs, one fore leg, one hind leg, two left legs and two right legs. The proposed robot forms relatively wide supporting polygons along the walking direction, so it can walk very fast stably. We implemented the proposed hexapod robot and showed the feasibility of the robot by 3+3 walking experiment and 2+4 walking experiment.

A new discrete-time robot model and its validity test

  • Lai, Ru;Ohkawa, Fujio;Jin, Chunzhi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.807-810
    • /
    • 1997
  • Digital control of robot manipulator employs discrete-time robot models. It is important to explore effective discrete-time robot models and to analyze their properties in control system designs. This paper presents a new type discrete-time robot model. The model is derived by using trapezoid rule to approximate the convolution integral term, then eliminating nonlinear force terms from robot dynamical equations. The new model obtained has very simple structure, and owns the properties of independence to the nonlinear force terms. According to evaluation criteria, three aspects of the model properties: model accuracy, model validity range and model simplicity are examined and compared with commonly used discrete-time robot models. The validity of the proposed model and its advantages to control system designs are verified by simulation results.

  • PDF

Development of Synchro-drive Mobile Robot Base with Endless Rotate Type Turret (무한회전 터릿을 갖는 동기식 이동로봇 베이스의 개발)

  • Kwon, Oh-Sang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.9 s.174
    • /
    • pp.123-129
    • /
    • 2005
  • As the robot industry changes from industrial robot into personal robot used in home, the concept also changes from the existing fixed manipulator into Mobile Manipulator of free move in the aspect of appliance. For personal robot with such features, the role of mobile system is very important technology that rules the roost of robot functions. Especially, it is necessary to develop moving mechanism for free move in a narrow environment with obstacles such as home. This study introduces 3-axis structure in order to develop synchronous method that has turret capable of endless revolution for practical use as well as semi-omnidirectional function, and suggests applicable method to solve the problem of mechanical coupling.

Integrated Dynamic Modeling and Hardware Oriented Control Scheme for a Simulator of an Industrial Robot (산업용 로보트의 시뮬레이터를 위한 종합적인 동적모델링과 하드웨어 구성과 일치하는 제어구조)

  • 이민기;이광남;임계영
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.11
    • /
    • pp.1759-1769
    • /
    • 1989
  • This paper presents the development of a simulator for an industrial robot. The simulator is characterized by a fully integrated dynamic model and a hardware oriented control scheme. The dynamic model includes the actuator dynamics as well as the manipulator dynamics to integrate the entire dynamics of the robot system. On the other hand, the control scheme is oriented as a hardware structure which is usually implemented in the industrial robot. That is to say, a conventional PI control law is used to regulate the position, the speed, and the current. A Pulse Wave Modulation (PWM)generator modulates the supplied voltage to the actuator. Since the simulator is consistent with the industrial robot system, it provides the essential design concepts for the development process of the robot. In practice, the simulator is applied to the SCARA robot which has been developed in GSIS. Here, it investigates the characteristics and performance of the robot with changing design parameters. Thus, the investigation furnishes criteria for the selection of acfuator, control gain, trajectory planning, etc.

  • PDF

Development of a Parallel-Serial Robot Arm for Propeller Grinding (프로펠러 연삭작업을 위한 병렬-직렬 로보트 암 개발)

  • Lee, Min Ki;Choi, Byung Oh;Jung, Jong Yoon;Park, Kun Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.2
    • /
    • pp.146-158
    • /
    • 1996
  • This paper develops a robot arm for propeller blade grinding. The grinding work requires a high stiffness robot arm to reduce deformation and vibration which are generated during machining operation. Conventional articulated robots have serial connecting links from the base to the gripper. Thus, they have very weak structure to the stiffness for grinding operation. Stewart Platform is a typical parallel robotic mechanism with very high stiffness but it has small work space and large installation space. This research proposes a new grinding robot arm by combining parallel mechanism with serial mechanism. Therefore, the robot has large range of work space as well as high stiffness. This paper introduces the automatic system for propeller grinding utilizing the robot and the design of proposed robot arm.

  • PDF

Design of Walking Robot Based on Jansen Mechanism (얀센 메커니즘 기반의 보행로봇 설계)

  • Ko, Jiwoo;Jo, Wonbin
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.429-433
    • /
    • 2016
  • Moving robot is divided 2 kinds; one is the robot using wheels and the other has leg structure. On plat terrain, the former is better than the latter because it has fast speed and simple method to control. But on non-plat terrain, the situation is reversed. The robot using legs has slow speed but it has advantage to adjust various environments. This robot is expected to contribute to human in many fields such as rescue and exploration and so on. So walking robot is worth enough to research. In this paper, we present the design of 4-legged walking robot based on Jansen mechanism using m-Sketch and Edison Designer.

  • PDF

A Revolute Robot Manipulator with a New Structure (새로운 구조의 다관절 로봇 매니퓰레이터)

  • Choi, Hyung-Sik;Kim, Young-Sik;Baek, Chang-Yul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.5
    • /
    • pp.539-546
    • /
    • 2004
  • Conventional robot manipulators actuated by motors with the speed reducer such as the harmonic drive have weakness in the load capacity, since the speed reducer does not have enough strength. To overcome this, a new type of the robot actuator based on the four-bar-link mechanism driven by the ball screw was proposed and constructed. Also, a new type of a revolute-jointed robot manipulator composed of the developed actuators was developed. The base axis is actuated by the motor with the conventional speed reducer, but the other axes are actuated by the proposed actuators. The kinematics and dynamics of the robot were analyzed, and the performance test of the robot was made. Through the test results, the performance of superior load capacity versus the robot weight is shown.