• Title/Summary/Keyword: Robot fingers

Search Result 78, Processing Time 0.03 seconds

Design of Rectangular-Type Four-Finger Rehabilitation Robot for Stroke Patient (뇌졸중환자를 위한 직교형 4개 손가락 재활로봇 기구설계)

  • Kim, Hyeon-Min;Kim, Gab-Soon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.5
    • /
    • pp.473-480
    • /
    • 2013
  • This paper describes the design of a rectangular-type four-finger rehabilitation robot for flexibility rehabilitation of stroke patients' fingers and other patient's paralyzed fingers. The four-finger rehabilitation robot is composed of a body and each finger rehabilitation robot instrument. The four-finger rehabilitation robot could exercise four fingers (forefinger, middle finger ring finger and little finger) of patient for their rehabilitation. The four-finger rehabilitation robot instruments move according to the trace which spread out the patient's fingers and then turn them inward for the fingers' flexibility, while at the same time performing the force control with the reference forces for fingers' safety, simultaneously. A control characteristic test of the developed rectangular-type four-finger rehabilitation robot was carried out, and the results confirmed that the robot could be used for the flexibility rehabilitation exercise for the fingers of normal person and patients.

Design of a Robot's Hand with Two 3-Axis Force Sensor for Grasping an Unknown Object

  • Kim, Gab-Soon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.3
    • /
    • pp.12-19
    • /
    • 2003
  • This paper describes the design of a robot's hand with two fingers for stably grasping an unknown object, and the development of a 3-axis force sensor for which is necessary to constructing the robot's fingers. In order to safely grasp an unknown object using the robot's fingers, they should measure the forces in the gripping and in the gravity directions, and control the measured forces. The 3-axis force sensor should be used for accurately measuring the weight of an unknown object in the gravity direction. Thus, in this paper, the robot's hand with two fingers for stably grasping an unknown object is designed, and the 3-axis force sensor is newly modeled and fabricated using several parallel-plate beams.

Development of Rectangular-type Thumb Rehabilitation Robot for Stroke Patient's Thumb Rehabilitation Exercise (뇌졸중 환자의 엄지손가락 재활운동을 위한 직교형 엄지손가락 재활로봇 개발)

  • Kim, Hyeon-Min;Kim, Yong-Guk;Shin, Hee-Suk;Yoon, Jong-Won;Kim, Gab-Soon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.5
    • /
    • pp.516-523
    • /
    • 2012
  • Stroke patients should exercise for the rehabilitation of their fingers, because they can't use their hand and fingers. The moving direction of thumb of five fingers is different that of four fingers (force finger, middle finger, ring finger, little finger). The thumb rehabilitation robot for rehabilitation exercise must be included a force control system, because robot can injure thumb by applying too much force. In this paper, the rectangular-type thumb rehabilitation robot was developed for stroke patient's thumb rehabilitation exercise of the flexibility rehabilitation exercise. The characteristic test of the developed rectangular-type thumb rehabilitation robot was carried out with normal men in their twenties. As a result, it is thought that the robot can be used for the flexibility rehabilitation exercise of stroke patient's thumb.

Development of Force Sensors for the Fingers of an Intelligent Robot's Hand (지능형 로봇손을 위한 손가락 힘센서 개발)

  • Kim, Gab-Soon
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.127-133
    • /
    • 2014
  • This paper describes a design and manufacture of a two-axis force sensor and a single-axis force sensor for the fingers of an intelligent robot's hand. The robot's finger is composed of a two-axis force sensor, a first knuckle, a single-axis force sensor, a second knuckle, a spring, a motor of first knuckle, a motor of second knuckle, and so on. The two-axis force sensor attached to the first knuckle and the single-axis force sensor attached to the second knuckle were designed and manufactured, and the characteristics test of two sensors was carried out. As a test results, the interference error of the two-axis force sensor was less than 0.68%, the repeatability error of each sensor was less than 0.02%, and then the non-linearity was less than 0.03%. It is thought that the sensors can be used for the fingers of the intelligent robot's hand for rehabilitation exercise of finger patients.

Development of Hand and Fingers Fixing System for Stroke Patient's Rehabilitation Exercise (뇌졸중 환자의 손가락 재활운동을 위한 손 및 손가락 고정장치 개발)

  • Kim, Hyeon-Min;Kim, Gab-Soon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.7
    • /
    • pp.753-761
    • /
    • 2012
  • This paper describes development of a hand and finger fixing system for the rehabilitation exercise of patient's fingers. In order to exercise the finger rehabilitation using a finger rehabilitation robot, a patient's hand or fingers are fixed safely. In this paper, The hand and fingers fixing system can safely fix stroke patient's hand and fingers by pressing with force control system. The characteristic test of the system was carried out. It is thought that the system could be used for fixing their fingers in stroke patient's finger rehabilitation exercise.

A Study on the Robot Structure of Hand for the Rehabilitation Training of Stroke Patients

  • Kim, Jong-Bok;Kim, Jong-Chul;Hwang, Dae-Joon
    • Journal of Biomedical Engineering Research
    • /
    • v.40 no.3
    • /
    • pp.116-124
    • /
    • 2019
  • The rehabilitation training robots for treating the upper limbs of stroke patients were mainly focused on the upper proximal treatment of it, but recently studies of the distal parts of the upper limbs for rehabilitation of the hand is making some progress even though it is still a small number so far. In this paper, we present the hand robot for the rehabilitation training of stroke patients that is the fingertip contact-typed mechanism, and it has also equipped with the wrist rehabilitation unit to be worked like human hand that enables any movements through mutual cooperation by fingers while picking up or grasping objects. The robot that is presented for this purpose supports the movement of fingers with 5-DoF and the wrist with 3-DoF that moves independently, and operates with a structure that allows the joints of the wrist and fingers to be collaborated organically together to each other. Also, hereby the simulation and evaluation test on its robot mechanism are performed to ensure that fingers with 5-DoF and the wrist with 3-DoF of the serial kinematical mechanism are designed to comply with or exceed ROM for ADL.

Implementation and Motion Control of Three Linkage Bar lingers

  • Jungs, Seul;Kim, Jeonggu;Kim, Sungsu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.107.1-107
    • /
    • 2002
  • $\textbullet$ Robot fingers $\textbullet$ Kinematics and dynamics of robot fingers $\textbullet$ 3 bar linkages $\textbullet$ Microprocessor control1er $\textbullet$ Serial communication $\textbullet$ Simulation Studies

  • PDF

Analysis on Stable Grasping based on Three-dimensional Acceleration Convex Polytope for Multi-fingered Robot (3차원 Acceleration Convex Polytope를 기반으로 한 로봇 손의 안정한 파지 분석)

  • Jang, Myeong-Eon;Lee, Ji-Hong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.1
    • /
    • pp.99-104
    • /
    • 2009
  • This article describes the analysis of stable grasping for multi-fingered robot. An analysis method of stable grasping, which is based on the three-dimensional acceleration convex polytope, is proposed. This method is derived from combining dynamic equations governing object motion and robot motion, force relationship and acceleration relationship between robot fingers and object's gravity center through contact condition, and constraint equations for satisfying no-slip conditions at every contact points. After mapping no-slip condition to torque space, we derived intersected region of given torque bounds and the mapped region in torque space so that the intersected region in torque space guarantees no excessive torque as well as no-slip at the contact points. The intersected region in torque space is mapped to an acceleration convex polytope corresponding to the maximum acceleration boundaries which can be exerted by the robot fingers under the given individual bounds of each joints torque and without causing slip at the contacts. As will be shown through the analysis and examples, the stable grasping depends on the joint driving torque limits, the posture and the mass of robot fingers, the configuration and the mass of an object, the grasp position, the friction coefficients between the object surface and finger end-effectors.

Development of Finger Robot for Simulating Fingers with Contracture and Spasticity (환자의 손가락 특성을 모사하는 로봇 개발)

  • Ha, D.K.;Song, M.;Park, H.S.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.8 no.4
    • /
    • pp.233-238
    • /
    • 2014
  • In this paper, we developed a finger robot simulating spasticity and contracture which can be used as a testing bed for evaluating performance of hand rehabilitation devices while it can be also used to train clinicians for improving reliability of clinical assessment. The robot is designed for adult finger size and for independent control of Metacarpophalangeal Joint and Proximal Interphalangeal Joint. Algorithm for mimicking spasticity and contracture is implemented. By adjusting the parameters related to contracture and spasticity, the robot can mimic various patterns of responses observed in fingers with spasticity and contracture.

  • PDF