• Title/Summary/Keyword: Robot Vehicle

Search Result 380, Processing Time 0.033 seconds

Vehicle Body Design of Armored Robot for Complex Disaster (복합 재난을 위한 장갑형 로봇의 차체 설계)

  • Park, Sang Hyun;Jin, Maolin;Kim, Young-Ryul;Kim, Doik;Kim, Jun-Sik;Shin, Dong Bin;Suh, Jinho
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.4
    • /
    • pp.248-255
    • /
    • 2018
  • In this paper, a design for a vehicle body of an armored robot for complex disasters is described. The proposed design considers various requirements in complex disaster situations. Fire, explosion, and poisonous gas may occur simultaneously under those sites. Therefore, the armored robot needs a vehicle body that can protect people from falling objects, high temperature, and poisonous gas. In addition, it should provide intuitive control devices and realistic surrounding views to help the operator respond to emergent situations. To fulfill these requirements of the vehicle body, firstly, the frame was designed to withstand the impact of falling objects. Secondly, the positive pressure device and the cooling device were applied. Thirdly, a panoramic view was implemented that enables real-time observation of surroundings through a number of image sensors. Finally, the cockpit in the vehicle body was designed focused on the manipulability of the armored robot in disaster sites.

Mobility Stabilization of a $6\times6$ Robot Vehicle by Suspension Kinematics Reconfiguration (현가장치 기구 재구성에 의한 $6\times6$ 로봇차량의 기동성 안정화)

  • Baek, W.K.;Lee, J.W.
    • Journal of Power System Engineering
    • /
    • v.14 no.3
    • /
    • pp.39-45
    • /
    • 2010
  • The dynamic stability of a robot vehicle can be enhanced by the Force-Angle Stability Margin concept that considers a variety of dynamic effects. To evaluate the robot vehicle stability, a SPI(stability performance index), which is a function of the suspension arm angles, was used. If the SPI has a minimum value, the robot vehicle has maximum stability. The FASM and SPI concepts were incorporated in the mobility simulation by using ADAMS and MATLAB/Simulink. The simulation results using these concepts showed significant improvements of the vehicle stability on rough terrains.

CCD-camera guiding of a vehicle robot

  • Arifin, Muhidin;Mori, Shingo;Komatsu, Noriyuki;Hayase, Minoru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.240-244
    • /
    • 1993
  • There are so many types of sensors which have been developed in order to construct intelligence robots. This paper presents the study of the movement of a vehicle robot using a CCD-Camera. The CCD-Camera is used as a sensor to control a vehicle robot in a stable movement. This vehicle robot is called CVR. The system is the combination of the CCD-Camera, the vehicle robot and a dedicated software controller. The stability of CVR is proven by studying the movement methodology. The performance of the movement is experimented.

  • PDF

A Study on the Implementation of Mobile Robot Remote Control System Based on JADS Standard (JAUS표준 기반의 모바일 로봇 원격제어 시스템 구현에 관한 연구)

  • Jung, Sung-Uk;Cho, Sang-Hyun;Kim, Tae-Hyu;Park, Young-Seak
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.9 no.3
    • /
    • pp.230-237
    • /
    • 2008
  • Recently, lots of interest and competition in developments related to the autonomous-vehicle robot are being further increased. However, the absence of the standard architectures for effectively controlling the autonomous-vehicle robot led to many difficulties such as the long duration of development and the uncompatibility with other autonomous-vehicle robots. Accordingly, we implemented a mobile autonomous-vehicle robot system based on JAUS standard architecture. The mobile robot communicates with the remote-control system by using wireless LAN UDP/IP JAUS command massages. Its effectiveness is showed through the experimental results related to the navigation of implemented robot.

  • PDF

A Study for Path Tracking of Vehicle Robot Using Ultrasonic Positioning System (초음파 위치 센서를 이용한 차량 로봇의 경로 추종에 관한 연구)

  • Yoon, Suk-Min;Yeu, Tae-Kyeong;Park, Soung-Jea;Hong, Sup;Kim, Sang-Bong
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.795-800
    • /
    • 2008
  • The paper presents research for the established experiment environment of multi vehicle robot, localization algorithm that is based on vehicle control, and path tracking. The established experiment environment consists of ultrasonic positioning system, vehicle robot, server and wireless module. Ultrasonic positioning system measures positioning for using ultrasonic sensor and generates many errors because of the influence of environment such as a reflection of wall. For a solution of this fact, localization algorithm is proposed to determine a location using vehicle kinematics and selection of a reliable location data. And path tracking algorithm is proposed to apply localization algorithm and LOS, finally, that algorithms are verified via simulation and experimental

  • PDF

Development of Swimming Mechanism and Algorithm for Fish-Type Underwater Robot(1) (물고기형 수중로봇의 유영메커니즘 및 알고리즘 개발(1))

  • Ryuh, Young-Sun
    • The Journal of Korea Robotics Society
    • /
    • v.4 no.1
    • /
    • pp.43-48
    • /
    • 2009
  • Generally, underwater vehicle type of propeller shows low efficiency about 50%-55%. However, the efficiency of swimming mechanism of a fish is 60%-70%, more efficient about 20% than screw propellers. Recently, research of underwater vehicle type of fish increase due to its good efficiency and is regarded as a typical bio-mimical robot. In this research, a new algorithm and mechanism that show low energy consumption imitating swimming mechanism of fish proposed increasing speed and running time in field trial.

  • PDF

Development of P-SURO II Hybrid Autonomous Underwater Vehicle and its Experimental Studies (P-SURO II 하이브리드 자율무인잠수정 기술 개발 및 현장 검증)

  • Li, Ji-Hong;Lee, Mun-Jik;Park, Sang-Heon;Kim, Jung-Tae;Kim, Jong-Geol;Suh, Jin-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.9
    • /
    • pp.813-821
    • /
    • 2013
  • In this paper, we present the development of P-SURO II hybrid AUV (Autonomous Underwater Vehicle) which can be operated in both of AUV and ROV (Remotely Operated Vehicle) modes. In its AUV mode, the vehicle is supposed to carry out some of underwater missions which are difficult to be achieved in ROV mode due to the tether cable. To accomplish its missions such as inspection and maintenance of complex underwater structures in AUV mode, the vehicle is required to have high level of autonomy including environmental recognition, obstacle avoidance, autonomous navigation, and so on. In addition to its systematic development issues, some of algorithmic issues are also discussed in this paper. Various experimental studies are also presented to demonstrate these developed autonomy algorithms.

DEVELOPMENT OF LEVEE WEEDING ROBOT - Pathway Control System on the Strait Levee -

  • Takeda, J.;Takahashi, S.;Torisu, R.;Ashraf, M.A.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.325-332
    • /
    • 2000
  • The objective of this research work is to develop an autonomous levee-weeding robot. In this paper, pathway control system for the robot is developed and simulated. A prototype autonomous vehicle for levee weeding is also developed and used in the actual test. The results obtained in this research work is summarized as follows; 1) The simulated typical time history of lateral displacements and heading angle of the vehicle in straight run shows that the vehicle tendency is always to achieve the target path from any of its deviated position and heading angle. 2) The test run on an asphalt surface by the prototype crawler-type vehicle is in good agreement with the simulation results.

  • PDF

Simulation Based Design of Intelligent Surveillance Robot for Mobility (모바일화를 위한 지능형 경계로봇의 시뮬레이션기반 설계)

  • Hwang, Ki-Sang;Kim, Do-Hyun;Park, Kyu-Jin;Park, Sung-Ho;Kim, Sung-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.4
    • /
    • pp.340-346
    • /
    • 2008
  • An unmanned surveillance robot consists of a machine gun, a laser receiver, a thermal imager, a color CCD camera, and a laser illuminator. It has two axis control systems for elevation and azimuth. Because the current robot system is mounded at a fixed post to take care of surveillance tasks, it is necessary to modify such a surveillance robot to be installed on an UGV (Unmanned Ground Vehicle) system in order to watch blind areas. Thus, it is required to have a stabilization system to compensate the disturbance from the UGV. In this paper, a simulation based design scheme has been adopted to develop a mobile surveillance robot. The 3D CAD geometry model has first been produced by using Pro-Engineer. The required pan and tilt motor capacities have been analyzed using ADAMS inverse dynamics analysis. A target tracking and stabilization control algorithm of the mobile surveillance robot has been developed in order to compensate the motion of the vehicle which will experience the rough terrain. To test the performance of the stabilization control system of the robot, ADAMS/simulink co-simulations has been carried out.

Magnetic Position Sensing System for Autonomous Vehicle and Robot Guidance (자율주행차량과 로봇의 안내를 위한 자계위치인식시스템)

  • Jung, Young-Yoon;Kim, Geun-Mo;Ryoo, Young-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.2
    • /
    • pp.214-219
    • /
    • 2007
  • In this paper, a new magnetic position sensing mettled for autonomous vehicle and robot guidance is presented. In autonomous vehicle and robot control, position sensing is an important task for the identification of their locations, such as the current position within a trajectory. The magnet based autonomous vehicle and robot was identified position via magnetic materials. In the magnetic sensing system, the Earth field is one of the largest disturbance. To removal of the Earth field, this paper proposes 1-dimensional magnetic field sensors array and develops precise petition sensing system using linear operating region of the magnetic field sensor. This proposal is verified a feasible magnetic position sensing system for autonomous vehicle and robot guidance by the experimental results.