• Title/Summary/Keyword: Robot Sensor

Search Result 1,597, Processing Time 0.024 seconds

Implementation of Automatic Teaching System for Subassembly Process in Shipbuilding (선박 소조립 공정용 로봇 자동교시 시스템의 구현)

  • 김정호;유중돈;김진오;신정식;김성권
    • Journal of Welding and Joining
    • /
    • v.14 no.2
    • /
    • pp.96-105
    • /
    • 1996
  • Robot systems are widely utilized in the shipbuilding industry to enhance the productivity by automating the welding process. In order to increase productivity, it is necessary to reduce the time used for robot teaching. In this work, the automatic teaching system is developed for the subassembly process in the shipbuilding industry. A alser/vision sensor is designed to detect the weld seam and the image of the fillet joint is processed using the arm method. Positions of weld seams defined in the CAD database are transformed into the robot coordinate, and the dynamic programming technique is applied to find the sub-optimum weld path. Experiments are carried out to verify the system performance. The results show that the proposed automatic teaching system performs successfully and can be applied to the robot system in the subassembly process.

  • PDF

A Novel Robot Sensor System Utilizing the Combination Of Stereo Image Intensity And Laser Structured Light Image Information

  • Lee, Hyun-Ki;Xingyong, Song;Kim, Min-Young;Cho, Hyung-Suck
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.729-734
    • /
    • 2005
  • One of the important research issues in mobile robot is how to detect the 3D environment fast and accurately, and recognize it. Sensing methods of utilizing laser structured light and/or stereo vision are representatively used among a number of methodologies developed to date. However, the methods are still in need of achieving high accuracy and reliability to be used for real world environments. In this paper to implement a new robotic environmental sensing algorithm is presented by combining the information between intensity image and that of laser structured light image. To see how effectively the algorithm applied to real environments, we developed a sensor system that can be mounted on a mobile robot and tested performance for a series of environments.

  • PDF

Vibration Control of a Single-wheel Robot Using a Filter Design (필터 설계를 통한 한 바퀴 구동 로봇의 진동 제어)

  • Lee, Sang-Deok;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.9
    • /
    • pp.863-868
    • /
    • 2015
  • In this paper, the vibration of a single-wheel mobile robot is minimized by designing a filter. An AHRS (Attitude and heading reference system) sensor is used for measuring the state of the robot. The measured signals are analyzed using the FFT method to investigate the fundamental vibrational frequency with respect to the flywheel's speed of the gimbal system. The IIR notch filter is then designed to suppress the vibration at the identified frequency. After simulating the performance of the designated filter using the measured sensor data through extensive experiments, the filter is actually implemented in a single-wheel mobile robot, GYROBO. Finally, the performance of the designed filter is confirmed by performing the balancing control task of the GYROBO system.

Contact Force Estimation in 2-link Robot Manipulator Using Extended Kalman Filters (확장된 칼만필터를 이용한 2축 로봇 매니퓰레이터의 접촉힘 추정)

  • 이중욱;허건수
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.4
    • /
    • pp.123-129
    • /
    • 2001
  • Recent requirements for the fast and accurate motion in industrial robot manipulators need more advanced control tech-niques. To satisfy the requirements, importance of force control is being continuously increased and the expensive force sensor is usually installed to obtain the contact force information in practice. This information is indispensable for the force control of maintaining the desired contact force. However, the sensor cost is too high to be used in industrial applications. In this paper, it is proposed to estimated the contact force occurring between the end-effector of 2 DOF robots and environ-ment. The contact force estimation system is developed based on the static and dynamic models of 2 DOF robot manipula-tors. where the contact force is described with respect to the link torque. The Extended Kalman Filter is designed and its performance is verified in simulations.

  • PDF

Localization of an Autonomous Mobile Robot Using Ultrasonic Sensor Data (초음파센서를 이용한 자율 이동로봇의 위치추적)

  • 최창혁;송재복;김문상
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.666-669
    • /
    • 2000
  • Localization is the process of aligning the robot's local coordinates with the global coordinates of a map. A mobile robot's location is basically computed by a dead reckoning scheme, but this position information becomes increasingly inaccurate during navigation due to odometry errors. In this paper, the method of building a map of a robot's environment using ultrasonic sensor data and the occupancy grid map scheme is briefly presented. Then, the search and matching algorithms to compensate for the odometry error by comparing the local map with the reference map are proposed and verified by experiments. It is shown that the compensated error is not accumulated and exists within the limited range.

  • PDF

Cooperative mobile robots using fuzzy algorithm

  • Ji, Seunghwan;Kim, Hyuntae;Park, Minkee;Park, Mignon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.468-472
    • /
    • 1992
  • In recent years, lots of researches on autonomous mobile robot have been accomplished. However they focused on environment recognition and its processing to make a decision on the motion, And cooperative multi-robot, which must be able to avoid crash and to make mutual communication, has not been studied much. This paper deals with cooperative motion of two robots, 'Meari 1" and "Meari 2 " made in our laboratory, based on communication between the two. Because there is an interference on communication occurring in cooperative motion of multi-robot, many restrictive conditions are required. Therefore, we have designed these robot system so that communication between them is available and mutual interference is precluded, and we used fuzzy interference to overcome unstability of sensor data.of sensor data.

  • PDF

Practice for Modular Mobile Robot and Position Recognition system in Ubiquitous Network (유비쿼터스 네트워크에서 모듈형 모바일 로봇과 위치 인식 시스템을 위한 사례)

  • Jeong, Goo-Cheol
    • The Journal of Korean Institute for Practical Engineering Education
    • /
    • v.4 no.2
    • /
    • pp.162-170
    • /
    • 2012
  • It is very important for the robot to recognize its position to accomplish numerous tasks and to go to the goal. In this paper, we suggest Location Recognition System to distinguish robot's locations using land-mark and the odometer in the environment of sensor network. All in all, we created a basic intelligent robot, Location Recognition System, and Environment Sensor Modules; we verified the proposed algorithm through computer simulation.

  • PDF

Contact force Estimation in 2-link Robot Manipulator Using Extended Kalman Filters (확장된 칼만필터를 이용한 2축 로봇 매니퓰레이터의 접촉힘 추정)

  • 이중욱;허건수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.14-19
    • /
    • 2000
  • Recent requirements for the fast and accurate motion in industrial robot manipulator need more advanced control techniques. To satisfy the requirements, importance of the force control is being continuously increased and the expensive force sensor is usually installed to obtain the contact force information in practice. This information is indispensable for the force control of maintaining the desired contact force. However the sensor cost is too high to be used in industrial applications. In this paper, it is proposed to estimate the contact force occurred between the end-effector of 2 DOF robots and environment. The contact force estimation system is developed based on the static and dynamic models of 2 DOF robot manipulators, where the contact force is described with respect to the link torque. The Extended Kalman Filter is designed and its performance is verified in simulations.

  • PDF

Contact Force Estimation of Robot Manipulators in 3-D Space (3차원 공간상에서 로봇 매니퓰레이터의 접촉힘 추정)

  • Lee, Jung-Wook;Heo, Kun-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.2
    • /
    • pp.192-197
    • /
    • 2001
  • Recent requirements for the fast and accurate motion in industrial robot manipulators need more advanced control techniques. To satisfy the requirements, importance of the force control is being continuously increased and the expensive force sensor is often installed to obtain the contact force information in practice. This information is indispensable for the force control of maintaining the desired contact force. However, the sensor cost is too high to be used in industrial applications. In this paper, it is proposed to estimate the contact force occurred between the end-effector of robots and environment in 3-D. The contact force monitoring system is developed based on the static and dynamic models of 3 DOF robot manipulators, where the contact force is described with respect to the link torque. The Extended Kalman Filter is designed and its performance is verified in simulations.

An Investigation of Robot Programming Language with the Capabilities of Sensory Information Processing (센서 정보 처리 기능을 갖는 로보트 프로그램밍 언어에 관한 조사)

  • Kim, Dae-Won;Ko, Myoun-Sam;Lee, Bum-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.435-438
    • /
    • 1987
  • In this paper, among the robot programming languages that enable processing of sensory information, eight exemplary languages are chosen, and investigated in terms of their characteristics, why they are designed the way they are, and the kind of sensors each language can use and apply to. In addition, the characteristics of each language is compared with one another from the sensor point of view and the flow of each language is analyzed from the robot language classification point of view. Finally, We investigate the progress and the requirements of the sensor-based robot programming languages for further developments.

  • PDF