• Title/Summary/Keyword: Robot Sensor

Search Result 1,590, Processing Time 0.028 seconds

Design and Implementation of Bird Repellent System (조류 퇴치 시스템의 설계 및 구현)

  • Hong, Hyunggil;Cho, Yongjun;Woo, Senongyong;Song, Suhwan;Oh, Jangseok;Yun, Haeyong;Kim, Dae Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.8
    • /
    • pp.104-109
    • /
    • 2019
  • Damage caused by wild animals such as pheasants and magpies is a problem in rural areas. A bird repellent system based on sensing and repelling farm pest animals and birds is proposed herein. This system is equipped with a bird model part on a supporting platform and comprises a sound source generator, a system control user interface, and a sensor in the center. The sensor is composed of an illuminance sensor and a PIR sensor. The illuminance sensor distinguishes between day and night, whereas the PIR sensor detects birds or wild animals and outputs them from the sound generator. The entire system can be managed easily by the user interface and system control.

On the use of an acoustic sensor for measuring the level of a zinc pot (용융아연욕 탕면 높이 측정을 위한 초음파 센서의 사용에 관하여)

  • 박상덕;임태균;이옥산
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.836-839
    • /
    • 1996
  • Throughout CGL (Continuous Galvanizing Line) in steel works, zinc-coated steel sheets are produced which are used where long-running corrosion resistivity is required. During the galvanizing process, top dross is created and floated on the zinc pot. Because the dross leaves ill patterns on the coated sheets, a robot system is developed to automatically collect and remove the top dross. It consists of a robot and its carriage system, a pot level sensor, a system controller, and special robot tools. For the first time the level of zinc pot must be measured and fed back to the robot controller to avoid submersion of the robot hand into the hot zinc pot. In this paper, acoustic distance sensor is tested as a candidate for the pot level sensor in the view point of hot environment. Some considerations on the use of the acoustic distance sensor will be denoted.

  • PDF

Development of Location Identification System for Moving Robot in the Sensor Space under KS Illumination Intensity Environment (국내 조명 환경에서 센서공간을 활용한 이동로봇의 위치인식시스템 개발)

  • Kang, Chul U.;Ko, Seok J.
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.9 no.2
    • /
    • pp.67-73
    • /
    • 2014
  • When a mobile robot performs in unknown environments, a location identification is an essential task. In this paper, we propose a location identification system that uses a sensor space without additional devices on the robot. Also the sensor space consists of a matrix of CDS sensor; when a robot was positioned on the CDS sensor, we can estimate the coordinate of the location by sensing a light. Based on KS illumination standard, experiments are performed in various environments. By evaluating the experimental results, we can show that the proposed system can be applicable to the location identification system of a moving robot.

Following a Wall by an Mobile Robot with Sonar Sensors and Infrared Sensors (초음파센서와 적외선센서를 갖는 이동로봇의 벽면 따르기)

  • 윤정원;홍석교
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.423-423
    • /
    • 2000
  • This paper proposes an effective algorithm for following a wall by an autonomous mobile robot with sonar sensors and infrared sensors in an indoor environment. The proposed method uses deadreckoning to estimate the current position and orientation of a mobile robot. Sonar sensor data are used to estimate shape and position of wall using proposed algorithm. Infrared sensor data are used as assistant when sonar sensor data is uncertain. Simulation results using mobile robot show that the proposed algorithm is proper for the following wall.

  • PDF

Hand/Eye calibration of Robot arms with a 3D visual sensing system (3차원 시각 센서를 탑재한로봇의 Hand/Eye 캘리브레이션)

  • 김민영;노영준;조형석;김재훈
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.76-76
    • /
    • 2000
  • The calibration of the robot system with a visual sensor consists of robot, hand-to-eye, and sensor calibration. This paper describe a new technique for computing 3D position and orientation of a 3D sensor system relative to the end effect of a robot manipulator in an eye-on-hand robot configuration. When the 3D coordinates of the feature points at each robot movement and the relative robot motion between two robot movements are known, a homogeneous equation of the form AX : XB is derived. To solve for X uniquely, it is necessary to make two robot arm movements and form a system of two equation of the form: A$_1$X : XB$_1$ and A$_2$X = XB$_2$. A closed-form solution to this system of equations is developed and the constraints for solution existence are described in detail. Test results through a series of simulation show that this technique is simple, efficient, and accurate fur hand/eye calibration.

  • PDF

Development of 6-axis Ankle Force/Moment Sensor for an Intelligent Foot of a Humanoid Robot (인간형 로봇의 지능형 발을 위한 6축 발목 힘/모멘트센서)

  • Kim, Gab-Soon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.1 s.190
    • /
    • pp.27-36
    • /
    • 2007
  • This paper describes the development of 6-axis ankle force/moment sensor for the intelligent feet of a humanoid robot. When the robot walks on uneven terrain, the feet should perceive the applied forces Fx, Fy, Fz and moments Mx, My, Mz from the attached 6-axis force/moment sensor on their ankles. Papers have already been published have some disadvantages in the size of the sensor, the rated output and so on. The rated output of each component sensor (6-axis ankle force/moment sensor) is very important to design the 6-axis force/moment sensor for precision measurement. Therefore, each sensor should be designed to get the similar rated output under each rated load. Also, the size of the sensor is very important for mounting to robot's feet. Therefore, the diameter should be below 100 mm and the height should be below 40mm. In this paper, first, the structure of a 6-axis ankle force/moment sensor was modeled for a humanoid robot's feet newly, Second, the equations to predict the strains on the sensing elements was derived, third, the size of the sensing elements was designed by using the equations, then, the sensor was fabricated by attaching straingages on the sensing elements, finally, the characteristic test of the developed sensor was carried out. The rated outputs from the derived equations agree well with the results from the experiments. The interference error of the sensor is less than 2.94%.

An Effective Mapping for a Mobile Robot using Error Backpropagation based Sensor Fusion (오류 역전파 신경망 기반의 센서융합을 이용한 이동로봇의 효율적인 지도 작성)

  • Kim, Kyoung-Dong;Qu, Xiao-Chuan;Choi, Kyung-Sik;Lee, Suk-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.9
    • /
    • pp.1040-1047
    • /
    • 2011
  • This paper proposes a novel method based on error back propagation neural networks to fuse laser sensor data and ultrasonic sensor data for enhancing the accuracy of mapping. For navigation of single robot, the robot has to know its initial position and accurate environment information around it. However, due to the inherent properties of sensors, each sensor has its own advantages and drawbacks. In our system, the robot equipped with seven ultrasonic sensors and a laser sensor navigates to map two different corridor environments. The experimental results show the effectiveness of the heterogeneous sensor fusion using an error backpropagation algorithm for mapping.

Autonomous Robot Kinematic Calibration using a Laser-Vision Sensor (레이저-비전 센서를 이용한 Autonomous Robot Kinematic Calibration)

  • Jeong, Jeong-Woo;Kang, Hee-Jun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.2 s.95
    • /
    • pp.176-182
    • /
    • 1999
  • This paper presents a new autonomous kinematic calibration technique by using a laser-vision sensor called "Perceptron TriCam Contour". Because the sensor measures by capturing the image of a projected laser line on the surface of the object, we set up a long, straight line of a very fine string inside the robot workspace, and then allow the sensor mounted on a robot to measure the point intersection of the line of string and the projected laser line. The point data collected by changing robot configuration and sensor measuring are constrained to on a single straght line such that the closed-loop calibration method can be applied. The obtained calibration method is simple and accurate and also suitable for on-site calibration in an industrial environment. The method is implemented using Hyundai VORG-35 for its effectiveness.

  • PDF

Development of an Obstacle Avoidance Algorithm for a Network-based Autonomous Mobile Robot (네트워크 기반 자율이동로봇을 위한 장애물 회피 알고리즘 개발)

  • Kim Hongryeol;Kim Dae Won;Kim Hong-Seok;Sohn SooKyung
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.5
    • /
    • pp.291-299
    • /
    • 2005
  • An obstacle avoidance algorithm for a network-based autonomous mobile robot is proposed in this paper. The obstacle avoidance algorithm is based on the VFH(Vector Field Histogram) algorithm and two delay compensation methods with the VFH algorithm are proposed for a network-based robot with distributed environmental sensors, mobile actuators, and the VFH controller. Firstly, the environmental sensor information is compensated by prospection with acquired environmental sensor information, measured network delays, and the kinematic model of the robot. The compensated environmental sensor information is used for building polar histogram with the VFH algorithm. Secondly, a sensor fusion algorithm for localization of the robot is proposed to compensate the delay of odometry sensor information and the delay of environmental sensor information. Through some simulation tests, the performance enhancement of the proposed algorithm in the viewpoint of efficient path generation and accurate goal positioning is shown here.

Monitoring Sensor Robot System based on Wireless Sensor Network (무선 센서 네트워크 기반의 모니터링 센서 로봇 시스템)

  • Choi, Ho-Jin;Pyun, Jae-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.12
    • /
    • pp.2330-2336
    • /
    • 2008
  • This paper deals with monitoring sensor robot control system for the application of wireless sensor network. In order to control the direction and speed of robot via remote sensing environment, low power, low weight sensors with ad-hoc networking between robots' sensors have been used. These wireless sensor network based robot monitoring system can be used for remote observation and detection of robots in the areas such as factories, power plants and other dangerous areas which are difficult for human access.