• 제목/요약/키워드: Robot Safety

Search Result 412, Processing Time 0.027 seconds

On Safety Improvement through Process Establishment for SOTIF Application of Autonomous Driving Logistics Robot

  • Choi, Kyoung Lak;Kim, Min Joong;Kim, Young Min
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.1
    • /
    • pp.209-218
    • /
    • 2022
  • Today, with the development of the Internet and mobile technology, consumers' purchasing patterns have shifted from offline to online. In addition, due to the recent COVID-19, online purchases have significantly increased, and accordingly, the courier industry for logistics delivery has also grown significantly. Various logistics robots are being operated in many industrial and can reduce the labor intensity and physical and mental fatigue of workers. However, if the logistics robot does not properly recognize the people or environment around it, it can lead to a serious accident. We conducted that how logistics robots can perform safe work in a working environment such as a logistics warehouse through the application of ISO/DIS 21448 (SOTIF) to autonomous logistics transport robots. This result is expected to contribute to the operation of unmanned logistics warehouses using AGV.

Shock-Absorbing Safety Mechanism Based on Transmission Angle of a 4-Bar Linkage (4절링크의 전달각에 기초한 충격흡수식 안전기구)

  • Park, Jung-Jun;Kim, Byeong-Sang;Song, Jae-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.11 s.242
    • /
    • pp.1534-1541
    • /
    • 2005
  • Unlike industrial manipulators, the manipulators mounted on service robots are interacting with humans in various aspects. Therefore, safety has been one of the most important design issues. Many compliant robot arms have been introduced for safety. It is known that passive compliance method has faster response and higher reliability than active ones. In this paper, a new safety mechanism based on passive compliance is proposed. Passive mechanical elements, specifically transmission angle of the 4-bar linkage, springs and shock absorbing modules are incorporated into this safety mechanism. This mechanism works only when the robot arm exerts contact force much more than the human pain tolerance. Validity of this mechanism is verified by simulations and experiments. It is shown that the manipulator using this mechanism provides higher performance and safety than those using other passive compliance mechanisms or active methods.

Collision Detection Algorithm based on Velocity Error (속도 오차 기반의 충돌 감지 알고리즘)

  • Cho, Chang-Nho;Lee, Sang-Duck;Song, Jae-Bok
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.2
    • /
    • pp.111-116
    • /
    • 2014
  • Human-robot co-operation becomes increasingly frequent due to the widespread use of service robots. However, during such co-operation, robots have a high chance of colliding with humans, which may result in serious injury. Thus, many solutions were proposed to ensure collision safety, and among them, collision detection algorithms are regarded as one of the most practical solutions. They allow a robot to quickly detect a collision so that the robot can perform a proper reaction to minimize the impact. However, conventional collision detection algorithms required the precise model of a robot, which is difficult to obtain and is subjected to change. Also, expensive sensors, such as torque sensors, are often required. In this study, we propose a novel collision detection algorithm which only requires motor encoders. It detects collisions by monitoring the high-pass filtered version of the velocity error. The proposed algorithm can be easily implemented to any robots, and its performance was verified through various tests.

A Study on the Stabilization Force Control of Robot Manipulator

  • Hwang, Yeong Yeun
    • International Journal of Safety
    • /
    • v.1 no.1
    • /
    • pp.1-6
    • /
    • 2002
  • It is important to control the high accurate position and force to prevent unexpected accidents by a robot manipulator. Direct-drive robots are suitable to the position and force control with high accuracy, but it is difficult to design a controller because of the system's nonlinearity and link-interactions. This paper is concerned with the study of the stabilization force control of direct-drive robots. The proposed algorithm is consists of the feedback controllers and the neural networks. After the completion of learning, the outputs of feedback controllers are nearly equal to zero, and the neural networks play an important role in the control system. Therefore, the optimum adjustment of control parameters is unnecessary. In other words, the proposed algorithm does not need any knowledge of the controlled system in advance. The effectiveness of the proposed algorithm is demonstrated by the experiment on the force control of a parallelogram link-type robot.

Development of Humanoid Joint Module for Safe Human-Robot Interaction (인간과의 안전한 상호 작용을 고려한 휴머노이드 조인트 모듈 개발)

  • Oh, Yeon Taek
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.4
    • /
    • pp.264-271
    • /
    • 2014
  • In this study, we have developed the humanoid joint modules which provide a variety of service while living with people in the future home life. The most important requirement is ensuring the safety for humans of the robot system for collaboration with people and providing physical service in dynamic changing environment. Therefore we should construct the mechanism and control system that each joint of the robot should response sensitively and rapidly to fulfill that. In this study, we have analyzed the characteristic of the joint which based on the target constituting the humanoid motion, developed the optimal actuator system which can be controlled based on each joint characteristic, and developed the control system which can control an multi-joint system at a high speed. In particular, in the design of the joint, we have defined back-drivability at the safety perspective and developed an actuator unit to maximize. Therefore we establish a foundation element technology for future commercialization of intelligent service robots.

Safe and Reliable Intelligent Wheelchair Robot with Human Robot Interaction

  • Hyuk, Moon-In;Hyun, Joung-Sang;Kwang, Kum-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.120.1-120
    • /
    • 2001
  • This paper proposes a prototype of a safe and reliable wheelchair robot with Human Robot Interaction (HRI). Since the wheelchair users are usually the handicapped, the wheelchair robot must guarantee the safety and reliability for the motion while considering users intention, A single color CCD camera is mounted for input user´s command based on human-friendly gestures, and a ultra sonic sensor array is used for sensing external motion environment. We use face and hand directional gestures as the user´s command. By combining the user´s command with the sensed environment configuration, the planner of the wheelchair robot selects an optimal motion. We implement a prototype wheelchair robot, MR, HURI (Mobile Robot with Human Robot Interaction) ...

  • PDF

Design of an Elbow Rehabilitation Robot based on Force Measurement and its Force Control (힘측정기반 팔꿈치 재활로봇 설계 및 힘제어)

  • Kim, Han-Sol;Kim, Gab-Soon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.5
    • /
    • pp.413-420
    • /
    • 2015
  • This paper describes the design of an elbow rehabilitation robot based on force measurement that enables a severe stroke patient confined to their bed to receive elbow rehabilitation exercises. The developed elbow rehabilitation robot was providewitha two-axis force/torque sensor which can detect force Fz and torque Tz, thereby allowing it to measure therotational force (Tz) exerted on the elbow and the signal force Fz which can be used as a safety device. The robot was designed and manufactured for severe stroke patients confined to bed, and the robot program was manufactured to perform flexibility elbow rehabilitation exercises. Asa result of the characteristics test of the developed rehabilitation robot, the device was safely operated while the elbow rehabilitation exercises were performed. Therefore, it is thought that the developed rehabilitation robot can be used for severe stroke patients.

Design of Mobile Robot's Curve Following by Wireless LAN Communication (무선 랜 통신을 이용한 이동 로봇의 곡선 추종 구현)

  • 홍인택;김용택;김종수;전홍태
    • Proceedings of the IEEK Conference
    • /
    • 2002.06c
    • /
    • pp.5-8
    • /
    • 2002
  • In this paper, we propose the self-autonomous algorithm for mobile robot system. The proposed mobile robot system controlled by Personal Digital Assistant(PDA) can follow the target at regular intervals. The mobile robot can evaluate the distance between robot and target with ultrasonic sensors, transmits the distance to the PDA. The velocity and direction decided in PDA are transmitted to the mobile robot with wireless LAN communication. Considering the state, velocity-changing and distance-maintenance, of the mobile robot, driving velocity and direction are applied. For safety, the velocity of the mobile robot is changed step by step. As a result, we confirm the ability of following the target with proposed mobile robot.

  • PDF

Development of Climbing Hydraulic Robot System's Synchronizing Controller for Construction Automation (시공자동화를 위한 크라이밍 유압로봇시스템의 동기제어 컨트롤러 개발)

  • Cho, Nam-Seok;Kim, Chang-Won;Kim, Dong-In;Lee, Kyu-Won;Cho, Hunhee;Kang, Kyung-In
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05a
    • /
    • pp.167-169
    • /
    • 2011
  • Construction Automation as a way to solve the problems of lack of skilled labor by decrease in construction population productivity and quality decrease. We are on the way to develop a construction automation system adequate for domestic circumstances in Korea; it is called RCA(Robotic-crane based Construction Automation) system. Climbing hydraulic robot system is a part of RCA system and makes Construction Factory(CF) climb next floor. The controller can control movement needs to be developed for CF safety. Synchronous control the actual field was applied to the controller logic and synchronous control of the process through which the safety has been verified. The purpose of this study that control of climbing hydraulic robot system behavior on real-time, and to improve safety for overall construction automation system through synchronous motion controller.

  • PDF