• 제목/요약/키워드: Robot Safety

Search Result 414, Processing Time 0.025 seconds

A Method to Support Real-time for User-level Robot Components on Windows (윈도우 유저 레벨 로봇 컴포넌트에 실시간성 지원 방법)

  • Ju, Min-Gyu;Lee, Jin-Wook;Jang, Choul-Soo;Kim, Sung-Hoon;Lee, Cheol-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.7
    • /
    • pp.51-59
    • /
    • 2011
  • Intelligent service robots leading the future market are robots which assist humans physically, mentally, and emotionally. Since intelligent service robots operate in a tightly coupled manner with humans, their safe operation should be an inevitable consideration. For this safety, real-time capabilities are necessary to execute certain services periodically. Currently, most robot components are being developed based on Windows for the sake of development convenience. However, since Windows does not support real-time, there is no option but to use expensive third-party software such as RTX and INTime. Also since most robot components are usually execute in user-level, we need to research how to support real-time in user-level. In this paper, we design and implement how to support real-time for components running in user-level on Windows using RTiK which actually supports real-time in kernel level on Windows.

A Survey Study on the development of Omni-Wheel Drive Rider Robot with autonomous driving systems for Disabled People and Senior Citizens (자율주행 탑승용 옴니 드라이브 라이더 로봇 개발에 대한 장애인과 고령자의 욕구조사)

  • Rhee, G.M.;Kim, D.O.;Lee, S.C.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.6 no.1
    • /
    • pp.17-27
    • /
    • 2012
  • This study provides development information on Omni-Wheel Drive Rider Robot, futuristic electric scooters, with autonomous driving systems that are used for people including the disabled and senior. Also, it is meaningful in suggesting alternatives to replace motorized wheelchairs or electric scooters for the future. Prior to development of Omni-Wheel Drive Rider Robot with autonomous driving systems, it surveyed 49 people, including 18 people who own electric scooters and 31 senior people who have not. The summary of the survey is as follows. First, inconveniences during riding and exiting and short mileage due and safety driving to problems of recharging batteries are the most urgent task. For these problems, the study shows that charging time of batteries, mileage, armrests, footrests, angle of a seat are the primary considerations. Second, drivers prefer joystick over steering wheels because of convenience in one-handed driving against dangers from footrest and carriageways sloping roads, paving blocks. One-handed driving can reduce driving fatigues with automatic stop systems. Moreover, the study suggests many design factors related to navigation systems, obstacle avoidance systems, omni-wheels, automatic cover-opening systems in rainy.

  • PDF

A Study on the Surface Roughness Behavior of Reactor Vessel Stud Holes in APR1400 Nuclear Power Plants (APR1400 원자로 용기 스터드 홀의 표면거칠기 거동에 관한 연구)

  • Kim, Dong Il;Kim, Chang Hun;Moon, Young Jun
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.15 no.1
    • /
    • pp.62-70
    • /
    • 2019
  • The APR1400 reactor may be operated for a long time under high temperature and pressure conditions, causing damage to the stud holes and causing stud bolts and holes to stick. The present practice is to manually remove the anti-sticking agent and foreign matter remaining in the APR1400 reactor stud hole and to visually check the surface condition of the thread to check the damage status of the threads. In the case of the APR1400 reactor stud holes, manually cleaning the threads increases the risk of radiation exposure and operator's fatigue. To avoid this, the autonomous mobile robot is used to automatically clean the reactor stud holes. The purpose of this study is to optimize the cleaning performance of the mobile robot by looking at the behavior of the surface roughness of the stud surface cleaned by the brush attached to the mobile robot due to changes in brush material, thickness of wire, and rotation speed. A microscopic approach to the surface roughness of the flank is needed to investigate the effects of the newly proposed brush of the autonomous mobile robot on the thread holes. According to this experiment, it is reasonable to use STS brush rather than Carbon one. Optimal operating conditions are derived and the safety of APR1400 reactor stud holes maintenance can be improved.

The Present and Future of Medical Robots: Focused on Surgical Robots (의료로봇의 현재와 미래: 수술로봇을 중심으로)

  • Song, Mi Ok;Cho, Yong Jin
    • Journal of Digital Convergence
    • /
    • v.19 no.4
    • /
    • pp.349-353
    • /
    • 2021
  • This study is a review study attempted to analyze the current situation of surgical robots based on previous research on surgical robots in the era of the 4th revolution, and to forecast the future direction of surgical robots. Surgical robots have made full progress since the launch of the da Vinci and the surgical robot is playing a role of supporting the surgeries of the surgeons or the master-slave method reflecting the intention of the surgeons. Recently, technologies are being developed to combine artificial intelligence and big data with surgical robots, and to commercialize a universal platform rather than a platform dedicated to surgery. Moreover, technologies for automating surgical robots are being developed by generating 3D image data based on diagnostic image data, providing real-time images, and integrating image data into one system. For the development of surgical robots, cooperation with clinicians and engineers, safety management of surgical robot, and institutional support for the use of surgical robots will be required.

Automated Surgical Planning System for Spinal Fusion Surgery with Three-Dimensional Pedicle Model (척추 융합 수술을 위한 삼차원 척추경 모델을 이용한 자동 수술 계획 시스템)

  • Lee, Jong-Won;Kim, Sung-Min;Kim, Young-Soo;Chung, Wan-Kyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.8
    • /
    • pp.807-813
    • /
    • 2011
  • High precision of planning in the preoperative phase can contribute to increase operational safety during computer-aided spinal fusion surgery, which requires extreme caution on the part of the surgeon, due to the complexity and delicacy of the procedure. In this paper, an advanced preoperative planning framework for spinal fusion is presented. The framework is based on spinal pedicle data obtained from CT (Computed Tomography) images, and provides optimal insertion trajectories and pedicle screw sizes. The proposed approach begins with safety margin estimation for each potential insertion trajectory that passes through the pedicle volume, followed by procedures to collect a set of insertion trajectories that satisfy operation safety objectives. The radius of a pedicle screw was chosen as 70% of the pedicle radius. This framework has been tested on 68 spinal pedicles of 8 patients requiring spinal fusion. It was successfully applied, resulting in an average success rate of 100% and a final safety margin of $2.44{\pm}0.51mm$.

Modern Cause and Effect Model by Factors of Root Cause for Accident Prevention in Small to Medium Sized Enterprises

  • Kang, Youngsig;Yang, Sunghwan;Patterson, Patrick
    • Safety and Health at Work
    • /
    • v.12 no.4
    • /
    • pp.505-510
    • /
    • 2021
  • Background: Factors related to root causes can cause commonly occurring accidents such as falls, slips, and jammed injuries. An important means of reducing the frequency of occupational accidents in small- to medium-sized enterprises (SMSEs) of South Korea is to perform intensity analysis of the root cause factors for accident prevention in the cause and effect model like decision models, epidemiological models, system models, human factors models, LCU (life change unit) models, and the domino theory. Especially intensity analysis in a robot system and smart technology as Industry 4.0 is very important in order to minimize the occupational accidents and fatal accident because of the complexity of accident factors. Methods: We have developed the modern cause and effect model that includes factors of root cause through statistical testing to minimize commonly occurring accidents and fatal accidents in SMSEs of South Korea and systematically proposed educational policies for accident prevention. Results: As a result, the consciousness factors among factors of root cause such as unconsciousness, disregard, ignorance, recklessness, and misjudgment had strong relationships with occupational accidents in South Korean SMSEs. Conclusion: We conclude that the educational policies necessary for minimizing these consciousness factors include continuous training procedures followed by periodic hands-on experience, along with perceptual and cognitive education related to occupational health and safety.

A Study on Image-Based Mobile Robot Driving on Ship Deck (선박 갑판에서 이미지 기반 이동로봇 주행에 관한 연구)

  • Seon-Deok Kim;Kyung-Min Park;Seung-Yeol Wang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.7
    • /
    • pp.1216-1221
    • /
    • 2022
  • Ships tend to be larger to increase the efficiency of cargo transportation. Larger ships lead to increased travel time for ship workers, increased work intensity, and reduced work efficiency. Problems such as increased work intensity are reducing the influx of young people into labor, along with the phenomenon of avoidance of high intensity labor by the younger generation. In addition, the rapid aging of the population and decrease in the young labor force aggravate the labor shortage problem in the maritime industry. To overcome this, the maritime industry has recently introduced technologies such as an intelligent production design platform and a smart production operation management system, and a smart autonomous logistics system in one of these technologies. The smart autonomous logistics system is a technology that delivers various goods using intelligent mobile robots, and enables the robot to drive itself by using sensors such as lidar and camera. Therefore, in this paper, it was checked whether the mobile robot could autonomously drive to the stop sign by detecting the passage way of the ship deck. The autonomous driving was performed by detecting the passage way of the ship deck through the camera mounted on the mobile robot based on the data learned through Nvidia's End-to-end learning. The mobile robot was stopped by checking the stop sign using SSD MobileNetV2. The experiment was repeated five times in which the mobile robot autonomously drives to the stop sign without deviation from the ship deck passage way at a distance of about 70m. As a result of the experiment, it was confirmed that the mobile robot was driven without deviation from passage way. If the smart autonomous logistics system to which this result is applied is used in the marine industry, it is thought that the stability, reduction of labor force, and work efficiency will be improved when workers work.

Technical Feasibility and Field Applicability Analysis of an All-in-one Attachment-based PHC Pile Head Cutting Robot (PHC 파일 원커팅 두부정리 자동화 로봇의 기술적 타당성 및 현장 적용성 분석)

  • Yeom, Dong-Jun;Kim, Jun-Sang;Kim, Young Suk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.21 no.2
    • /
    • pp.98-106
    • /
    • 2020
  • Conventional method of PHC pile head cutting work has several challenges with regard to safety, convenience, productivity, and quality. To address such problems, a prototype of the all-in-one attachment-based PHC pile cutting robot is developed(Yeom, 2018). The Primary objective of this study are to develop a final prototype of all-in-one attachment-based PHC pile cutting robot and to analyze technical feasibility and field applicability of final prototype. According to the technical feasibility and field applicability analysis result, at least 74.2% of the respondents are selected positive answer about technical feasibility of the final prototype, at least 66.6% of the respondents are selected positive answer about field applicability of the final prototype. It is expected that when deployed onsite, the final prototype can not only increase the practical use but also improvement the work safety and productivity of work at the PHC pile head cutting job site.

Design and Implementation of Real-time Digital Twin in Heterogeneous Robots using OPC UA (OPC UA를 활용한 이기종 로봇의 실시간 디지털 트윈 설계 및 구현)

  • Jeehyeong Kim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.4
    • /
    • pp.189-196
    • /
    • 2023
  • As the manufacturing paradigm shifts, various collaborative robots are creating new markets. Demand for collaborative robots is increasing in all industries for the purpose of easy operation, productivity improvement, and replacement of manpower who do simple tasks compared to existing industrial robots. However, accidents frequently occur during work caused by collaborative robots in industrial sites, threatening the safety of workers. In order to construct an industrial site through robots in a human-centered environment, the safety of workers must be guaranteed, and there is a need to develop a collaborative robot guard system that provides reliable communication without the possibility of dispatch. It is necessary to double prevent accidents that occur within the working radius of cobots and reduce the risk of safety accidents through sensors and computer vision. We build a system based on OPC UA, an international protocol for communication with various industrial equipment, and propose a collaborative robot guard system through image analysis using ultrasonic sensors and CNN (Convolution Neural Network). The proposed system evaluates the possibility of robot control in an unsafe situation for a worker.

Compliant Ultrasound Proximity Sensor for the Safe Operation of Human Friendly Robots Integrated with Tactile Sensing Capability

  • Cho, Il-Joo;Lee, Hyung-Kew;Chang, Sun-Il;Yoon, Euisik
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.310-316
    • /
    • 2017
  • The robot proximity and tactile sensors can be categorized into two groups: grip sensors and safety sensors. They have different performance requirements. The safety sensor should have long proximity range and fast response in order to secure enough response time before colliding with ambient objects. As for the tactile sensing function, the safety sensor need to be fast and compliant to mitigate the impact from a collision. In order to meet these requirements, we proposed and demonstrated a compliant integrated safety sensor suitable to human-friendly robots. An ultrasonic proximity sensor and a piezoelectric tactile sensor made of PVDF films have been integrated in a compliant PDMS structure. The implemented sensor demonstrated the maximum proximity range of 35 cm. The directional tolerance for 30 cm detection range was about ${\pm}15^{\circ}$ from the normal axis. The integrated PVDF tactile sensor was able to detect various impacts of up to 20 N in a controlled experimental setup.