• Title/Summary/Keyword: Robot Safety

Search Result 414, Processing Time 0.029 seconds

Technical Feasibility Study on Live-line Maintenance Robot System for Overhead Distribution Lines (가공 배전선로 활선 정비 로봇 시스템의 기술 타당성 검토)

  • Joon-Young, Park;Yoon-Geon, Lee;Young-Sik, Jang
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.8 no.2
    • /
    • pp.49-53
    • /
    • 2022
  • The distribution live-line work method is an operation method of working in a state in which electricity flows through overhead distribution lines to minimize inconvenience to electric customers due to power failure. In June 2016, to strengthen the safety of electrical workers, Korea Electric Power Corporation announced that it would in principle abolish the rubber glove method, in which workers wore protective equipment such as rubber gloves and performed their maintenance work. In addition, KEPCO announced that it would develop a short-range live working method using smart sticks and an advanced live-line maintenance robot system where workers work without touching wires directly. This paper is a preliminary study for the development of the live-line maintenance robot system, and deals with the results of analyzing the technical feasibility of whether the live works performed by workers can be replaced by robots or not.

Obstacle-avoidance Algorithm using Reference Joint-Velocity for Redundant Robot Manipulator with Fruit-Harvesting Applications

  • Y.S. Ryuh;Ryu, K.H.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.638-647
    • /
    • 1996
  • Robot manipulators for harvesting fruits must be controlled to track the desired path of end-effector to avoid obstacles under the consideration of collision free area and safety path. This paper presents a robot path control algorithm to secure a collision free area with the recognition of work environments. The flexible space, which does not damage fruits or branches of tree due to their flexibility and physical properties , extends the workspace. Now the task is to control robot path in the extended workspace with the consideration of collision avoidance and velocity limitation at the time of collision concurrently. The feasibility and effectiveness of the new algorithm for redundant manipulators were tested through simulations of a redundant manipulator for different joint velocities.

  • PDF

Multi-camera-based 3D Human Pose Estimation for Close-Proximity Human-robot Collaboration in Construction

  • Sarkar, Sajib;Jang, Youjin;Jeong, Inbae
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.328-335
    • /
    • 2022
  • With the advance of robot capabilities and functionalities, construction robots assisting construction workers have been increasingly deployed on construction sites to improve safety, efficiency and productivity. For close-proximity human-robot collaboration in construction sites, robots need to be aware of the context, especially construction worker's behavior, in real-time to avoid collision with workers. To recognize human behavior, most previous studies obtained 3D human poses using a single camera or an RGB-depth (RGB-D) camera. However, single-camera detection has limitations such as occlusions, detection failure, and sensor malfunction, and an RGB-D camera may suffer from interference from lighting conditions and surface material. To address these issues, this study proposes a novel method of 3D human pose estimation by extracting 2D location of each joint from multiple images captured at the same time from different viewpoints, fusing each joint's 2D locations, and estimating the 3D joint location. For higher accuracy, the probabilistic representation is used to extract the 2D location of the joints, considering each joint location extracted from images as a noisy partial observation. Then, this study estimates the 3D human pose by fusing the probabilistic 2D joint locations to maximize the likelihood. The proposed method was evaluated in both simulation and laboratory settings, and the results demonstrated the accuracy of estimation and the feasibility in practice. This study contributes to ensuring human safety in close-proximity human-robot collaboration by providing a novel method of 3D human pose estimation.

  • PDF

Morkov Model of Robot System With Human Error (로봇시스템에서 휴먼에러를 고려한 마코프모형)

  • 최성운
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2000.11a
    • /
    • pp.281-286
    • /
    • 2000
  • 최근 자동화생산 및 장치산업에서 로봇시스템의 사용이 증가하고 있다. 그러나 로봇 오퍼레이터, 프로그래머, 공무요원 등 간의 커뮤니케이션 부족으로 휴먼에러가 발생하여 사람의 안전재해사고 뿐 아니라 로봇시스템 가동율에서도 나뱉 영향을 주고 있다. 따라서 본 연구에서는 여유컴포넌트 마코프모형을 기초로 휴먼에러를 고려한 마코프모형을 제안한다.

  • PDF

On the Diagnostic Methods for the Product Liability Management System (PL대응시스템 진단기법)

  • 김종걸;빈성욱
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2004.05a
    • /
    • pp.153-159
    • /
    • 2004
  • There are various types of PLM(product liability management) according to corporation management level. It is necessary to develop diagnostic methods and application systems for PLM as well as to establish an efficient PLM system. This paper aims to propose a PLM system which can be applied to product with high-reliability and high-safety, and diagnostic methods for PLM based on AHP, and also show an empirical application of the proposed PL management system for Auto Test Robot System of the Mobile Phone (EVT 4320).

  • PDF

Adaptive Obstacle Avoidance Algorithm using Classification of 2D LiDAR Data (2차원 라이다 센서 데이터 분류를 이용한 적응형 장애물 회피 알고리즘)

  • Lee, Nara;Kwon, Soonhwan;Ryu, Hyejeong
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.348-353
    • /
    • 2020
  • This paper presents an adaptive method to avoid obstacles in various environmental settings, using a two-dimensional (2D) LiDAR sensor for mobile robots. While the conventional reaction based smooth nearness diagram (SND) algorithms use a fixed safety distance criterion, the proposed algorithm autonomously changes the safety criterion considering the obstacle density around a robot. The fixed safety criterion for the whole SND obstacle avoidance process can induce inefficient motion controls in terms of the travel distance and action smoothness. We applied a multinomial logistic regression algorithm, softmax regression, to classify 2D LiDAR point clouds into seven obstacle structure classes. The trained model was used to recognize a current obstacle density situation using newly obtained 2D LiDAR data. Through the classification, the robot adaptively modifies the safety distance criterion according to the change in its environment. We experimentally verified that the motion controls generated by the proposed adaptive algorithm were smoother and more efficient compared to those of the conventional SND algorithms.

Development of Inspection Robot for Removing Snow on Stays of Cable-Stayed Bridge (사장교 케이블의 잔설 제거용 점검 로봇 개발)

  • Kim, Jaehwan;Seo, Dong-Woo;Jung, Kyu-San;Park, Ki-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.3
    • /
    • pp.246-252
    • /
    • 2020
  • Safety accidents have been reported due to falling accumulated snow from cables of cable-supported bridges. In addition to the direct damage caused by falling snow, secondary damage, such as traffic accidents, can occur. Various methods have been proposed to prevent these accidents, but there are still problems in safety and practicality. In this study, a cable robot type was selected as one of the active methods for removing accumulated snow on cables. An attempt was made to increase the climbing ability of the robot to improve the efficiency of snow removal. In addition, the available range of cable diameter for the robot can be adjusted flexibly to be applied to cables used in the field. A high-resolution camera was also installed to check the surface condition of the cable in real time to increase the utility, and be used as a cable inspection robot. A three-axis accelerometer and a tension conversion algorithm were added to measure the tension force of cables. To verify the performance, indoor and field experiments were conducted, and future improvements for the inspection robot were proposed.