• 제목/요약/키워드: Robot Navigation

검색결과 821건 처리시간 0.029초

Efficient navigation of mobile robot based on the robot's experience in human co-existing environment

  • Choi, Jae-Sik;Chung, Woo-Jin;Song, Jae-Bok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2024-2029
    • /
    • 2005
  • In this paper, it is shown how a mobile robot can navigate with high speed in dynamic real environment. In order to achieve high speed and safe navigation, a robot collects environmental information. A robot empirically memorizes locations of high risk due to the abrupt appearance of dynamic obstacles. After collecting sufficient data, a robot navigates in high speed in safe regions. This fact implies that the robot accumulates location dependent environmental information and the robot exploits its experiences in order to improve its navigation performance. This paper proposes a computational scheme how a robot can distinguish regions of high risk. Then, we focus on velocity control in order to achieve high speed navigation. The proposed scheme is experimentally tested in real office building. The experimental results clearly show that the proposed scheme is useful for improving a performance of autonomous navigation. Although the scope of this paper is limited to the velocity control in order to deal with unexpected obstacles, this paper points out a new direction towards the intelligent behavior control of autonomous robots based on the robot's experience.

  • PDF

A BIM and UWB integrated Mobile Robot Navigation System for Indoor Position Tracking Applications

  • Park, JeeWoong;Cho, Yong K.;Martinez, Diego
    • Journal of Construction Engineering and Project Management
    • /
    • 제6권2호
    • /
    • pp.30-39
    • /
    • 2016
  • This research presents the development of a self-governing mobile robot navigation system for indoor construction applications. This self-governing robot navigation system integrated robot control units, various positioning techniques including a dead-reckoning system, a UWB platform and motion sensors, with a BIM path planner solution. Various algorithms and error correction methods have been tested for all the employed sensors and other components to improve the positioning and navigation capability of the system. The research demonstrated that the path planner utilizing a BIM model as a navigation site map could effectively extract an efficient path for the robot, and could be executed in a real-time application for construction environments. Several navigation strategies with a mobile robot were tested with various combinations of localization sensors including wheel encoders, sonar/infrared/thermal proximity sensors, motion sensors, a digital compass, and UWB. The system successfully demonstrated the ability to plan an efficient path for robot's movement and properly navigate through the planned path to reach the specified destination in a complex indoor construction site. The findings can be adopted to several potential construction or manufacturing applications such as robotic material delivery, inspection, and onsite security.

이동로봇에서 퍼지제어를 이용한 방법 (Navigation Using Fuzzy Control in Mobile Robot)

  • 권대갑;이봉구
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1994년도 추계학술대회 논문집
    • /
    • pp.784-789
    • /
    • 1994
  • In the mobile robot research, monitoring the present status and self-navigating the robot in various environment are signifiant. This paper treates a navigation algorithm using a fuzzy logic and a sensor system - laser range finder. The navigation algorithm using a fuzzy logic is achieved by organizing the knoweledge base for self-navigation of mobile robot. In order that mobile robot is economically arrived the goal, the knowledge base is applied to acquire the informations of moving distance, direction, and velocity in every cycle time.

  • PDF

사각장치에 의해 감지된 가이드 마크를 이용한 이동 로보트의 효과적인 항법 (Effective Navigation of a Mobile Robot Using Guide-Marks Sensed through Vision)

  • 조동권;권호열;서일홍
    • 대한전기학회논문지
    • /
    • 제38권12호
    • /
    • pp.963-970
    • /
    • 1989
  • The navigation problem for a mobile robot is investigated. Specifically, it is proposed that simple guide-marks be introduced and the navigation scheme be generated in conjunction with the guide-marks sensed through camera vision. For autonomous navigation, it was shown that a triple guide-mark system is more effective than a single guide-mark in estimating the position and orientation of mobile robot itself. The navigation system is tested via a mobile robot HERO-I equipped with a single camera in laboratory environment.

  • PDF

전역 초음파 시스템을 이용한 이동 로봇의 자율 주행 (Autonomous Navigation of Mobile Robot Using Global Ultrasonic System)

  • 황병훈;이수영
    • 제어로봇시스템학회논문지
    • /
    • 제10권6호
    • /
    • pp.529-536
    • /
    • 2004
  • Autonomous navigation of an indoor mobile robot using the global ultrasonic system is presented in this paper. Since the trajectory error of the dead-reckoning navigation grows with time and distance, the autonomous navigation of a mobile robot requires to localize the current position of the robot, so that to compensate the trajectory error. The global ultrasonic system consisting of four ultrasonic generators fixed at a priori known positions in the work space and two receivers on the mobile robot has the similar structure with the well-known satellite GPS(Global Positioning System), and it is useful for the self-localization of an indoor mobile robot. The EKF(Extended Kalman Filter) algorithm for the self-localization is proposed and the autonomous navigation based on the self-localization is verified by experiments.

모바일로봇의 정밀 실내주행을 위한 개선된 ORB-SLAM 알고리즘 (Modified ORB-SLAM Algorithm for Precise Indoor Navigation of a Mobile Robot)

  • 옥용진;강호선;이장명
    • 로봇학회논문지
    • /
    • 제15권3호
    • /
    • pp.205-211
    • /
    • 2020
  • In this paper, we propose a modified ORB-SLAM (Oriented FAST and Rotated BRIEF Simultaneous Localization And Mapping) for precise indoor navigation of a mobile robot. The exact posture and position estimation by the ORB-SLAM is not possible all the times for the indoor navigation of a mobile robot when there are not enough features in the environment. To overcome this shortcoming, additional IMU (Inertial Measurement Unit) and encoder sensors were installed and utilized to calibrate the ORB-SLAM. By fusing the global information acquired by the SLAM and the dynamic local location information of the IMU and the encoder sensors, the mobile robot can be obtained the precise navigation information in the indoor environment with few feature points. The superiority of the modified ORB-SLAM was verified to compared with the conventional algorithm by the real experiments of a mobile robot navigation in a corridor environment.

모듈화 구조 기반의 청소 로봇 시스템 설계 (Design of Cleaning Robot System Using Reconfigurable Heterogeneous Modular Architecture)

  • 안호석;사인규;최진영
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2009년도 정보 및 제어 심포지움 논문집
    • /
    • pp.153-155
    • /
    • 2009
  • Cleaning robot system consists of four parts; navigation system for moving of robot, cleaning system, power system, and main system with cleaning algorithm. Navigation system is the most expensive part because it has motors and sensors which is high price. Navigation system is also essential to service robot system, but user should buy two systems which are service robot system and cleaning robot system. If it is possible to share navigation system, user can save money. In this paper, we design the cleaning robot system based on modular architecture.

  • PDF

지능형 로봇의 인터넷 기반 원격 제어 (Internet-Based Remote Control of the Intelligent Robot)

  • 유영선;김종선;김형석;주영훈
    • 제어로봇시스템학회논문지
    • /
    • 제13권3호
    • /
    • pp.242-248
    • /
    • 2007
  • In this paper, we implement the internet-based remote control system for intelligent robot. For remote control of the robot, it uses the socket communication of the TCP/IP. It consists of the user interface and the robot control interface. Robot control interface transmits the navigation and environmental informations of the robot into the user interface. In order to transmit the large environmental images, a JPEG compression algorithm is used. User interface displays the navigation status of the robot and transmits the navigation order into the robot control interface. Also, we propose the design method of the fuzzy controller using navigation data acquired by expert's knowledge or experience. To do this, we use virus-evolutionary genetic algorithm(VEGA). Finally, we have shown the proposed system can be operated through the real world experimentations.

PSO를 이용한 지능형 로봇의 원격 주행 제어 (Remote Navigation Control for Intelligent Robot Using PSO)

  • 문현수;주영훈
    • 로봇학회논문지
    • /
    • 제5권1호
    • /
    • pp.64-69
    • /
    • 2010
  • In this paper, we propose remote navigation control for intelligent robot using particle swarm optimization(PSO). The proposed system consists of interfaces for intelligent robot navigation and user interface in order to control the intelligent robot remotely. And communication interfaces using TCP/IP socket is used. To do this, we first design the fuzzy navigation controller based on expert's knowledge for intelligent robot navigation. At this time, we use the PSO algorithm in order to identify the membership functions of fuzzy control rules. And then, we propose the remote system in order to navigate the robot remotely. Finally, we show the effectiveness and feasibility of the developed controller and remote system through some experiments.

천정 부착 칼라 패치 배열을 이용한 이동로봇의 자기위치 인식 (Localization for Mobile Robot Navigation using Color Patches Installed on the Ceiling)

  • 왕실;진홍신;마이클 스트르젤레키;김형석
    • 제어로봇시스템학회논문지
    • /
    • 제14권2호
    • /
    • pp.156-160
    • /
    • 2008
  • A localization system to estimate the position as well as movement direction of mobile robots is proposed in this paper. This system implements a camera fixed on a robot and color patches evenly distributed and mounted on the planar ceiling. Different permutations of patch colors code information about robot localization. Thus, extraction of color information from patch images leads to estimation of robot position. Additionally, simple geometric indicators are combined with patch colors to estimate robot's movement direction. Since only the distribution of patch colors has to be known, the analysis of patch images to is relatively fast and simple. The proposed robot localization system has been successfully tested for navigation of sample mobile robot. Obtained test results indicate the robustness and reliability of proposed technique for robot navigation.