• Title/Summary/Keyword: Robot Insects

Search Result 16, Processing Time 0.025 seconds

Development and Application of Robot Curriculum Based Education in Insects Robot (곤충형 로봇 제작에 기반한 로봇 교육과정 개발 및 적용)

  • Moon, Wae-Shik;Yoo, Seoung-Han
    • Journal of The Korean Association of Information Education
    • /
    • v.14 no.2
    • /
    • pp.209-218
    • /
    • 2010
  • Robot Curriculum based education in Insects Robot help elementary school students better understand how a robot works. This robot curriculum is aimed at elementary school students in fifth grade. This study progressed with LEGO(R) MINDSTORMS(R) NXT, departed 6 groups, reached the insect's movement, designed robot like insects. This curriculum enhanced discussion prowess and improved the ability of building robot. During this study, most of the students were attracted to the action of the robot-like insect's movement.

  • PDF

Insect-Model Based Robots

  • Kuwana, Yoshihiko
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.1 no.2
    • /
    • pp.91-93
    • /
    • 2000
  • Insects have many excellent features and functions in their small bodies, such as hexapod walking, flapping flight, vision systems, sensory hairs, etc, and those characteristics can be thought as good models for many types of robots. Insects also will be good models far micro-machines because of its size. Insect behavior consists of simple reflex acts and programmed behavior, Some robots were made in order to clarify the emergent mechanism of insect behavior, Through some experiments it would be found that even if insect behavior consists of some simple action patterns, it looks intelligent through interactions its sensors and actuators with its complex environment. In the near futures small robots inspired by insects will be used in many fields of our life. I hope that insect-model based robots will play an active part in many fields and that they will make us happy.

  • PDF

A Study on Genetic Algorithm-based Biped Robot System (유전 알고리즘 기반의 이족보행로봇 시스템에 관한 연구)

  • 공정식;한경수;김진걸
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.8
    • /
    • pp.135-143
    • /
    • 2003
  • This paper presents the impact minimization of a biped robot by using genetic algorithm. In case we want to accomplish the designed plan under the special environments, a robot will be required to have walking capability and patterns with legs, which are in a similar manner as the gaits of insects, dogs and human beings. In order to walk more effectively, studies of mobile robot movement are needed. To generate optimal motion for a biped robot, we employ genetic algorithm. Genetic algorithm is searching for technology that can look for solution from the whole district, and it is possible to search optimal solution from a fitness function that needs not to solve differential equation. In this paper, we generate trajectories of gait and trunk motion by using genetic algorithm. Using genetic algorithm not only on gait trajectory but also on trunk motion trajectory, we can obtain the smoothly stable motion of robot that has the least impact during the walk. All of the suggested motions of biped robot are investigated by simulations and verified through the real implementation.

Landmark Navigation through Sector-based Image Matching Method with Reference Compass (각도 좌표계가 있는 경우의 구획 기반 이미지 매칭 기법을 이용한 랜드마크 네비게이션)

  • Lee, Ji-Won;Kim, Dae-Eun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.7
    • /
    • pp.674-680
    • /
    • 2010
  • It is known that many insects and animals can return to their nest after exploration, with their own specific homing mechanisms. Their homing navigation methods have been applied to the robotic navigation. In this paper, we test the sector-based image matching method motivated by the honeybee's landmark navigation behaviour. Here, our robotic approach uses the reference compass to identify the current head direction and the relative angular position of landmarks for the navigation. The robot shows desirable homing behaviors if the robot is surrounded by landmarks. The result of robot experiment is in good agreement with that of simulation.

Learning of Emergent Behaviors in Collective Virtual Robots using ANN and Genetic Algorithm

  • Cho, Kyung-Dal
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.3
    • /
    • pp.327-336
    • /
    • 2004
  • In distributed autonomous mobile robot system, each robot (predator or prey) must behave by itself according to its states and environments, and if necessary, must cooperate with other robots in order to carry out a given task. Therefore it is essential that each robot have both learning and evolution ability to adapt to dynamic environment. This paper proposes a pursuing system utilizing the artificial life concept where virtual robots emulate social behaviors of animals and insects and realize their group behaviors. Each robot contains sensors to perceive other robots in several directions and decides its behavior based on the information obtained by the sensors. In this paper, a neural network is used for behavior decision controller. The input of the neural network is decided by the existence of other robots and the distance to the other robots. The output determines the directions in which the robot moves. The connection weight values of this neural network are encoded as genes, and the fitness individuals are determined using a genetic algorithm. Here, the fitness values imply how much group behaviors fit adequately to the goal and can express group behaviors. The validity of the system is verified through simulation. Besides, in this paper, we could have observed the robots' emergent behaviors during simulation.

Effect of Leg Stiffness on the Running Performance of Milli-Scale Six-Leg Crawling Robot with Payload (소형 6족 주행 로봇의 페이로드와 다리 강성이 로봇의 주행 성능에 미치는 영향)

  • Chae, Soo-Hwan;Baek, Sang-Min;Lee, Jongeun;Yim, Sojung;Ryu, Jae-Kwan;Jo, Yong-Jin;Cho, Kyu-Jin
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.4
    • /
    • pp.270-277
    • /
    • 2019
  • Inspired by small insects, which perform rapid and stable locomotion based on body softness and tripod gait, various milli-scale six-legged crawling robots were developed to move rapidly in harsh environment. In particular, cockroach's leg compliance was resembled to enhance the locomotion performance of the crawling robots. In this paper, we investigated the effects of changing leg compliance for the locomotion performance of the small light weight legged crawling robot under various payload condition. First, we developed robust milli-scale six-leg crawling robot which actuated by one motor and fabricated in SCM method with light and soft material. Using this robot platform, we measured the running velocity of the robot depending on the leg stiffness and payload. In result, there was optimal range of the leg stiffness enhancing the locomotion ability at each payload condition in the experiment. It suggests that the performance of the crawling robot can be improved by adjusting stiffness of the legs in given payload condition.

Design and Analysis of Leg Linkage of Small-scale Insect-inspired Ground Mobile Robot (소형 곤충형 지상 이동 로봇 주행 메커니즘의 다리 기구 설계 및 분석)

  • Sojung Yim;Seongjun Lee;Sang-Min Baek;Seokhaeng Huh;Jaekwan Ryu;Kyu-Jin Cho
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.3
    • /
    • pp.285-292
    • /
    • 2023
  • Small-scale ground mobile robots can access confined spaces where people or larger robots are unable. As the scale of the robot decreases, the relative size of the environment increases; therefore, maintaining the mobility of the small-scale robot is required. However, small-scale robots have limitations in using a large number of high-performance actuators, powerful computational devices, and a power source. Insects can effectively navigate various terrains in nature with their legged motion. Discrete contact with the ground and the foot enables creatures to traverse irregular surfaces. Inspired by the leg motion of the insect, researchers have developed small-scale robots and they implemented swing and lifting motions of the leg by designing leg linkages that can be adapted to small-scale robots. In this paper, we propose a leg linkage design for insect-inspired small-scale ground mobile robots. To use minimal actuation and reduce the control complexity, we designed a 1-DOF 3-dimensional leg linkage that can generate a proper leg trajectory using one continuous rotational input. We analyzed the kinematics of the proposed leg linkage to investigate the effect of link parameters on the foot trajectory.

Review of Biomimetic Designs for the Development of Jumping Robots (점핑로봇 개발을 위한 생체모방적 설계 방법의 리뷰)

  • Ho, Thanhtam;Seung, Hyun-Soo;Lee, Sang-Yoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.3
    • /
    • pp.201-207
    • /
    • 2012
  • Jumping is considered as a suitable way for realizing fast locomotion on the ground. As for the issue of developing mobile robots that can jump up and forward enough for accomplishing useful missions, this paper first introduces two types of jumping principles that are found in biological animals or insects. We also present how the principles are applied to several jumping robot examples that include outcomes for the past a few years and also our recent one. Design ideas and features of the robots are explained and compared in order to discuss important issues and guidelines for the design of jumping robots.

A Milli-Scale Double-sided Crawling Robot (양면 주행이 가능한 소형 12족 주행 로봇)

  • Kim, Sung-Hyun;Jung, Gwang-Pil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.356-361
    • /
    • 2020
  • This paper presents a lightweight milli-scale crawling robot that can crawl on both sides, which was inspired by the movement of insects. This robot has an excellent ability to overcome obstacles, such as the narrow gaps and the rough terrain. In addition, the robot can crawl steadily and rapidly through triangular alternation, such as ants or cockroaches. The process of smart composite microstructures (SCM) was employed to make a lightweight robot structure. The SCM process replaced the conventional mechanical parts with flexure joints and composite links, which allows the weight of the robot to be reduced. In addition, the robot structure was robust against external impacts owing to the compliance of the constituent materials. Using the SCM process, the robot weighed only 32g with twelve legs in total on both sides. The robot showed a crawling speed of 0.52m/s on the front side and 0.42m/s on the backside.

Design and Analysis of Small Walking Robots Utilizing Piezoelectric Benders

  • Park, Jong Man;Song, Chi Hoon;Park, Min Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.5
    • /
    • pp.380-385
    • /
    • 2020
  • Over the past decade, small robots have been of particular interest in the engineering field. Among the various types of small robots, biomimetic robots, which mimic animals and insects, have been developed for special activities in areas where humans cannot physically access. The optimal motion of a walking robot can be determined by the characteristics of the traversed surface (e.g., roughness, curvature, slope, materials, etc.). This study proposes three types of piezoelectric structures using different driving mechanisms, depending on the application range of the small walking robots. Dynamic modeling using computer-aided engineering optimized the shape of the robot to maximize its moving characteristics, and the results were also verified through its fabrication and experimentation. Three types of robots, named by their actuator shapes as I, π, & T-shape, were proposed regarding application for small scale ambulatory robots to different terrain conditions. Among these, the T-shaped robots were shown to have a wide range of speeds (from 2 mm/s up to 255 mm/s) and good carrying capacity (up to 10 g at 50 mm/s) through driving experiments. Based on this study, we proposed possible application areas for the three types of walking robot actuators.