• Title/Summary/Keyword: Robot Implementation

Search Result 770, Processing Time 0.041 seconds

A study on the implementation of new ROBOT CONTROLLER with MULTI-TASKING and MULTI-ROBOT functions (다중 processor를 이용한 multi-robot용 제어기의 구현에 대한 연구)

  • 김성락;추상원;이충기;임형준;이용중;이인옥
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.507-510
    • /
    • 1988
  • The main subject of this paper is the development of new ROBOT CONTROLLER, which can support MULTI-TASKING and MULTI-ROBOT functions. The system consists of various kinds of CPU modules according to their independent jobs. Acceleration and Deceleration profile is given in order to achieve the smooth robot motion and high cycle time. Further the communication capacity should be upgraded to meet the various kinds of peripheral PA devices.

  • PDF

Design and Implementation of Snake Robot with 8 Module (8개의 모듈로 구성된 뱀 로봇)

  • 박병진;서재용;하상형;전홍태
    • Proceedings of the IEEK Conference
    • /
    • 2002.06e
    • /
    • pp.189-192
    • /
    • 2002
  • This paper has been studied the movement of snake robot. In this paper we developed a simulator to simulate the creeping locomotion of a snake robot. This Robot makes possible to analyze the creeping locomotion with the normal-direction slip coupled to gliding along the tangential direction. Using the nonslip condition of the wheels, the robot gains propulsion by means of constrained forces on the wheels caused by bending the joints. The results of simulations show that smooth lateral undulatory motion is achived.

  • PDF

A Study on the Control of Macro-Micro Robotic Systems (마크로-마이크로 로보트의 제어에 관한 연구)

  • 주진화;명지태;박의열;이장명
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.9
    • /
    • pp.47-56
    • /
    • 1994
  • In this paper, we demonstrate how to design a redundant robot which is suitable for the multiple task execution without any constraints on the work space. The implementation is possible by the rigid connection of a cacro-robot and a micro-robot. A 5 d.o.f. articulated robor designed for commercial purpose is utilized as a micro-robot which can perform a general task with the appropriate adjustment of its base location. The base of a micro-robot is located at a suitable position by the macro-robot designed and implemented through this research. A task assigned to this redundant robot is performed mainly by the micro-robot. However, when the micro-robot cannot perform the task by itself or when the micro-robot has difficulties in performing the task, the coordination of the macro-robot is requited. To monitor the task execution efficiency of the micro-robot, we used the 'Manipulability Measure' as a cost function. The coordination between the two robots are verified both by the simulation and the experiment.

  • PDF

A study on INS/GPS implementation of loosely coupled method for localization of mobile robot. (이동로봇의 위치 추정을 위한 약결합 방식의 INS/GPS 구현에 관한 연구)

  • Park, Myung-Hoon;Hong, Seung-Hong
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.493-495
    • /
    • 2004
  • In this paper, shows a research in accordance with the design the implementation of the localization system for mobile robot using INS(Inertial Navigation System) and GPS(Global Positioning System). First, a Strapdown Inertial Navigation System : SDINS is designed and implemented for low speed walking robot, by modifying Inertial Navigation System which is widely used for rocket, airplane, ship and so on. In addition, thesis proposes the localization of robot with the method of loosely coupled method by using Kalman Filter with INS/GPS integrated system to utilize assumed position and steed data from GPS.

  • PDF

Towards a Ubiquitous Robotic Companion: Design and Implementation of Ubiquitous Robotic Service Framework

  • Ha, Young-Guk;Sohn, Joo-Chan;Cho, Young-Jo;Yoon, Hyun-Soo
    • ETRI Journal
    • /
    • v.27 no.6
    • /
    • pp.666-676
    • /
    • 2005
  • In recent years, motivated by the emergence of ubiquitous computing technologies, a new class of networked robots, ubiquitous robots, has been introduced. The Ubiquitous Robotic Companion (URC) is our conceptual vision of ubiquitous service robots that provide users with the services they need, anytime and anywhere in ubiquitous computing environments. To realize the vision of URC, one of the essential requirements for robotic systems is to support ubiquity of services: that is, a robot service must be always available even though there are changes in the service environments. Specifically robotic systems need to be automatically interoperable with sensors and devices in current service environments, rather than statically preprogrammed for them. In this paper, the design and implementation of a semantic-based ubiquitous robotic space (SemanticURS) is presented. SemanticURS enables automated integration of networked robots into ubiquitous computing environments exploiting Semantic Web Services and AI-based planning technologies.

  • PDF

Implementation of Force Tracking Control of a Slave Mobile Robot for Teleoperation Control System (원격제어 시스템의 종로봇인 이동 로봇의 제작과 힘 추종 제어 구현)

  • Bae, Yeong-Geol;Choi, Ho-Jin;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.7
    • /
    • pp.681-687
    • /
    • 2010
  • In this paper, an implementation of force control for a slave mobile robot in tele-operation environment is presented. A mobile robot is built to have a force control capability with a force sensor and tested for force tracking control performances. Both position and contact force are regulated by a PID based hybrid control method and the impedance force control method. To minimize accumulated errors due to the adaptive impedance force control method, the novel force control method with a weighted function is proposed. Experimental studies of regulating contact forces for different control algorithms are tested and their performances are compared.

A Real-Time Sound Recognition System with a Decision Logic of Random Forest for Robots (Random Forest를 결정로직으로 활용한 로봇의 실시간 음향인식 시스템 개발)

  • Song, Ju-man;Kim, Changmin;Kim, Minook;Park, Yongjin;Lee, Seoyoung;Son, Jungkwan
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.3
    • /
    • pp.273-281
    • /
    • 2022
  • In this paper, we propose a robot sound recognition system that detects various sound events. The proposed system is designed to detect various sound events in real-time by using a microphone on a robot. To get real-time performance, we use a VGG11 model which includes several convolutional neural networks with real-time normalization scheme. The VGG11 model is trained on augmented DB through 24 kinds of various environments (12 reverberation times and 2 signal to noise ratios). Additionally, based on random forest algorithm, a decision logic is also designed to generate event signals for robot applications. This logic can be used for specific classes of acoustic events with better performance than just using outputs of network model. With some experimental results, the performance of proposed sound recognition system is shown on real-time device for robots.

Implementation of a Remote Peg-in-Hole Operation using a Two Degrees of Freedom Force-Reflective Joystick

  • Sung K. An;Seung J. Han;Lee, Jang M.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.340-345
    • /
    • 1998
  • A virtual reality system is implemented for the operator supervising a robot's operation at a remote site. For this implementation, a two D.O.F force-reflective joystick is designed to reflect the force/torque measured at the end of robotic manipulator and to generate the motion command for the robot by the operator using this joystick. In addition, the visual information that is captured by a CCD camera, is transmitted to the remote operator and is displayed on a CRT monitor. The operator who is holding the force reflective joystick and watching the CRT monitor can resolve unexpected problems that the robot confronts with. That is, the robot performs the tasks autonomously unless it confronts with unexpected events that can be resolved by only the operator. To demonstrate the feasibility of this system, a remote peg-in-hole operation is implemented and the experimental data are shown.

  • PDF

Implementation of the Adaptive-Neuro Controller of Industrial Robot Using DSP(TMS320C50) Chip (DSP(TMS320C50) 칩을 사용한 산업용 로봇의 적응-신경제어기의 실현)

  • 김용태;정동연;한성현
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.2
    • /
    • pp.38-47
    • /
    • 2001
  • In this paper, a new scheme of adaptive-neuro control system is presented to implement real-time control of robot manipulator using Digital Signal Processors. Digital signal processors, DSPs, are micro-processors that are particularly developed for fast numerical computations involving sums and products of measured variables, thus it can be programmed and executed through DSPs. In addition, DSPs are as fast in computation as most 32-bit micro-processors and yet at a fraction of therir prices. These features make DSPs a viable computational tool in digital implementation of sophisticated controllers. Unlike the well-established theory for the adaptive control of linear systems, there exists relatively little general theory for the adaptive control of nonlinear systems. Adaptive control technique is essential for providing a stable and robust perfor-mance for application of robot control. The proposed neuro control algorithm is one of learning a model based error back-propagation scheme using Lyapunov stability analysis method.The proposed adaptive-neuro control scheme is illustrated to be a efficient control scheme for the implementation of real-time control of robot system by the simulation and experi-ment.

  • PDF