• 제목/요약/키워드: Robot Identification

검색결과 185건 처리시간 0.027초

링크인자 보정에 의한 로보트 위치 정밀도 개선 (Positioning Accuracy Improvement of Robots by Link Parameter Calibration)

  • 조의정;하영균;이상조;박영필
    • 한국정밀공학회지
    • /
    • 제6권3호
    • /
    • pp.32-45
    • /
    • 1989
  • The positioning accuracy of robots depends upon a forward kinematics which relates the joint variables to the orientation and position of the robot extremity in the absolute coordinate system. The relationship between two connective joint coordi- nates of a robot, which is the basis of the kinematics, is defined by 4 Denavit-Hartenberg parameters. But manufacturing errors in machining and assembly process of robots lead to disctrepancies between the design parameters and the physical structure. Thus, improving the positioning accuracy of robots reguires the identification of the actual link parameters of each robot. In this study, the least-squares method is used to calibrate the link parameters and off-line parameter calibration software is developed. Computer simulation is done to study the dependence of the calibration performance upon the DOF of the robot and number of acquired data set used in the least-squares method. 3 DOF Robot/Controller and specially designed 3D coordinate measurer is made and experiment is carried out to verify the theoretical and computational analysis.

  • PDF

저하된 로봇 비전에서의 물체 인식을 위한 진화적 생성 기반의 컬러 검출 기법 (Evolutionary Generation Based Color Detection Technique for Object Identification in Degraded Robot Vision)

  • 김경태;서기성
    • 전기학회논문지
    • /
    • 제64권7호
    • /
    • pp.1040-1046
    • /
    • 2015
  • This paper introduces GP(Genetic Programming) based color detection model for an object detection of humanoid robot vision. Existing color detection methods have used linear/nonlinear transformation of RGB color-model. However, most of cases have difficulties to classify colors satisfactory because of interference of among color channels and susceptibility for illumination variation. Especially, they are outstanding in degraded images from robot vision. To solve these problems, we propose illumination robust and non-parametric multi-colors detection model using evolution of GP. The proposed method is compared to the existing color-models for various environments in robot vision for real humanoid Nao.

TMS320C5X칩을 사용한 스카라 로봇의 극점 배치 자기동조 적응제어기의 실현 (Implementation of a Pole-Placement Self-Tuning Adaptive Controller for SCARA Robot Using TMS320C5X Chip)

  • 배길호;한성현
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.754-758
    • /
    • 1996
  • This paper presents a new approach to the design of self-tuning adaptive control system that is robust to the changing dynamic configuration as well as to the load variation factors using Digital signal processors for robot manipulators. TMS320C50 is used in implementing real-time adaptive control algorithms to provide advanced performance for robot manipulator, In this paper, an adaptive control scheme is proposed in order to design the pole-placement self-tuning controller which can reject the offset due to any load disturbance without a detailed description of robot dynamics. Parameters of discrete-time difference model are estimated by the recursive least-square identification algorithm, and controller parameters we determined by the pole-placement method. Performance of self-tuning adaptive controller is illusrated by the simulation and experiment for a SCARA robot.

  • PDF

Robust Fault-Tolerant Control for Robotic Systems

  • Shin, Jin-Ho;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1998년도 제13차 학술회의논문집
    • /
    • pp.513-518
    • /
    • 1998
  • In this paper, a robust fault-tolerant control scheme for robot manipulators overcoming actuator failures is presented. The joint(or actuator) fault considered in this paper is the free-swinging joint failure and causes the loss of torque on a joint. The presented fault-tolerant control framework includes a normal control with normal(non-failed) operation, a fault detection and a fault-tolerant control to achieve task completion. For both no uncertainty case and uncertainty case, a stable normal con-troller and an on-line fault detection scheme are presented. After the detection and identification of joint failures, the robot manipulator becomes the underactuated robot system with failed actuators. A robust adaptive control scheme of robot manipulators with the detected failed-actuators using the brakes equipped at the failed(passive) joints is proposed in the presence of parametric uncertainty and external disturbances. To illustrate the feasibility and validity of the proposed fault-tolerant control scheme, simulation results for a three-link planar robot arm with a failed joint are presented.

  • PDF

로봇의 동특성을 고려한 컨베이어 추적시스템의 작업영역 해석 (Dynamic workspace analysis of a robot manipulator for conveyor tracking system)

  • 박태형
    • 제어로봇시스템학회논문지
    • /
    • 제4권2호
    • /
    • pp.226-234
    • /
    • 1998
  • The concept of dynamic tracking line is proposed as the feasible tracking region for a robot in a robot-conveyor system, which takes the conveyor speed into consideration. This paper presents an effective method to identify the dynamic tracking line in a robotic workcell. The maximum line speed of a robot is derived in an analytic form using the parameterized dynamics and kinematics of the manipulator, and some of its properties are established mathematically. The identification problem of the dynamic tracking line is then formulated as a root-solving problem for a single-variable equation, and solved by using a simple numerical technique. Finally, numerical examples are presented to demonstrate the methodology and its applications in workspace specification.

  • PDF

Obstacle Avoidance of Mobile Robot Based on Behavior Hierarchy by Fuzzy Logic

  • Jin, Tae-Seok
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제12권3호
    • /
    • pp.245-249
    • /
    • 2012
  • In this paper, we propose a navigation algorithm for a mobile robot, which is intelligently searching the goal location in unknown dynamic environments using an ultrasonic sensor. Instead of using "sensor fusion" method which generates the trajectory of a robot based upon the environment model and sensory data, "command fusion" method is used to govern the robot motions. The navigation strategy is based on the combination of fuzzy rules tuned for both goal-approach and obstacle-avoidance. To identify the environments, a command fusion technique is introduced, where the sensory data of ultrasonic sensors and a vision sensor are fused into the identification process.

로봇 오프라인 프로그래밍을 위한 작업장에 고정된 공작물 교시 정보를 이용한 로봇작업장 보정 (Robotic Workplace Calibration Using Teaching Data of Work-Piece Fixed in Robotic Workplace for Robot Off-line Programming)

  • 정준효;국금환
    • 한국정밀공학회지
    • /
    • 제30권6호
    • /
    • pp.615-621
    • /
    • 2013
  • The robot calibration has greatly improved the absolute accuracy of the industrial robot. However, the accuracy of the relative positions of robotic tool-tip at work-points on a work-piece is only slightly corrected by the robot calibration since there has been no practical method to eliminate the elements of the setup position errors at a robotic workplace. A robotic workplace calibration is demonstrated in this paper to minimize the relative position errors between a robot tool-tip and the work-point on a work-piece. The existing teaching and playback method has been developed for the robotic workplace calibration. This paper uses the work-piece fixed in a robotic work-place as measurement equipment instead of a special robot measurement equipment for the robotic workplace calibration. The positive effect of the robotic workplace calibration is supported by the results of computer simulation on an ideal robotic workplace model and an experiment at the actual robotic workplace.

RFID를 이용한 출입관리 로봇 (RFID-based access management robot)

  • 문병현;이태훈;서용석;황지영;류정탁
    • 한국산업정보학회논문지
    • /
    • 제13권4호
    • /
    • pp.139-144
    • /
    • 2008
  • RFID(Radio Frequency Identification) 기술은 유비쿼터스 사회를 만들어 가기 위한 핵심 기술로서 기초기반 기술 및 사회기반 기술의 정비가 진행되어 가고 있으며, 우리나라에서도 IT839 전략의 신성장동력의 하나로 추진되고 있다. 본 논문은 유비쿼터스 사회에 발맞추어 RFID 기술을 이용한 출석관리 로봇을 개발하였다. 본 시스템은 RFID 카드를 이용해 출석 관리 시스템에 적용함으로써 사람이 직접 출석을 관리하는 번거로움을 줄이고 로봇에 카메라를 설치하여 대리 출석을 막는 효과를 더했다. 또한 로봇에 사용자 용무를 판단하는 메뉴를 더하여 출석을 관리하는 것에 끝나지 않고 점심 퇴근 외출 등 여러 용무를 정확한 시간과 함께 기록 가능하므로 기업이나 연구실 등에서도 이 시스템을 도입하여 충분히 활용 가능 할 것으로 본다.

  • PDF

이어핀 삽입 자동화 시스템을 위한 템플릿 매칭 기반 홀 판별 방법 (Hole Identification Method Based on Template Matching for Ear Pins Insertion Automation System)

  • 백종환;이재열;정명수;장민우;신동호;서갑호;홍성호
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 춘계학술발표대회
    • /
    • pp.330-333
    • /
    • 2020
  • 장신구 산업은 인건비의 비중이 높고 노동자의 역량에 따라 제품의 제작 작업 시간 및 품질의 편차가 심하다. 이에 산업계의 수요에 맞추어 실리콘 금형 표면 지름 0.75mm 홀에 이어핀을 삽입하는 공정을 자동화하기 위하여 삽입 자동화 시스템이 개발되고 있다. 본 논문에서는 이어핀 삽입 자동화시스템에서 적용할 수 있는 템플릿 매칭 방법과 관심 영역 레이블링을 통한 홀 판별 방법을 제안한다. 제안한 방법의 안정성을 확보하기 위하여 실험을 통해 최적의 매칭 방법과 이진화 기법을 적용하였으며 이어핀 홀의 좌표를 확보하여 X-Y 정밀 이송 시스템에 적용할 수 있다.

Use of Support Vector Regression in Stable Trajectory Generation for Walking Humanoid Robots

  • Kim, Dong-Won;Seo, Sam-Jun;De Silva, Clarence W.;Park, Gwi-Tae
    • ETRI Journal
    • /
    • 제31권5호
    • /
    • pp.565-575
    • /
    • 2009
  • This paper concerns the use of support vector regression (SVR), which is based on the kernel method for learning from examples, in identification of walking robots. To handle complex dynamics in humanoid robot and realize stable walking, this paper develops and implements two types of reference natural motions for a humanoid, namely, walking trajectories on a flat floor and on an ascending slope. Next, SVR is applied to model stable walking motions by considering these actual motions. Three kinds of kernels, namely, linear, polynomial, and radial basis function (RBF), are considered, and the results from these kernels are compared and evaluated. The results show that the SVR approach works well, and SVR with the RBF kernel function provides the best performance. Plus, it can be effectively applied to model and control a practical biped walking robot.