• Title/Summary/Keyword: Robot Identification

Search Result 185, Processing Time 0.056 seconds

Fault detection and identification for a robot used in intelligent manufacturing (IMS용 로봇에서의 FDI기법 연구)

  • 이상길;송택렬
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1489-1492
    • /
    • 1997
  • To increase reliability and performance of an IMS(Intelligent Manufacturing System), fault tolerant control based on an accurate fault diagnosis is needed. In this paper, robot FDI(fault detection and identification) is proposed for IMS where the robot is controlled with state estimates of a nonlinear filter using a mathematical robot model. The Chi-square distribution is applied fault detection and fault size is estimated by a proposed bias filter. Performance of the proposed algorithm is tested by simulation for studies.

  • PDF

Fault Detection and Identification for a Robot used in Intelligent Manufacturing (IMS용 로봇의 고장진단기법에 관한 연구)

  • 이상길;송택렬
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.5
    • /
    • pp.666-673
    • /
    • 1998
  • To increase reliability and performance of an IMS(Intelligent Manufacturing System), fault tolerant control based on an accurate fault diagnosis is needed. In this paper, robot FDI(fault detection and identification) is proposed for IMS where the robot is controlled with state estimates of a nonlinear filter using a mathematical robot model. The Chi-square test and GLR(General likelihood ratio) test are applied for fault detection and fault size is estimated by a proposed bias filter. Performance of the proposed algorithm is tested by simulation for studies.

  • PDF

Unattended Reception Robot using Face Identification (얼굴 인증을 이용한 무인 접수 로봇 개발)

  • Park, Se Hyun;Ryu, Jeong Tak;Moon, Byung Hyun;Cha, Kyung Ae
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.19 no.5
    • /
    • pp.33-37
    • /
    • 2014
  • As personal information is utilized as an important user authentication means, a trustable certification means is being required. The face identification technology using characteristics of the personal face among several biometrics technologies is easy in extracting features. In this paper, we implement a face identification robot for unattended reception. The robot is performed by face identification. To assess the effectiveness of the robot, it was tested and experimental results show that the proposed method is applicable for unattended reception interface.

Development of Location Identification System for Moving Robot in the Sensor Space under KS Illumination Intensity Environment (국내 조명 환경에서 센서공간을 활용한 이동로봇의 위치인식시스템 개발)

  • Kang, Chul U.;Ko, Seok J.
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.9 no.2
    • /
    • pp.67-73
    • /
    • 2014
  • When a mobile robot performs in unknown environments, a location identification is an essential task. In this paper, we propose a location identification system that uses a sensor space without additional devices on the robot. Also the sensor space consists of a matrix of CDS sensor; when a robot was positioned on the CDS sensor, we can estimate the coordinate of the location by sensing a light. Based on KS illumination standard, experiments are performed in various environments. By evaluating the experimental results, we can show that the proposed system can be applicable to the location identification system of a moving robot.

A practical identification method for robot system dynamic parameters

  • Kim, Sung-wun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.705-710
    • /
    • 1989
  • A practical method of identifying the inertial parameters, viscous friction and Coulomb friction of a robot is presented. The parameters in the dynamic equations of a robot are obtained from the measurements of the command voltage and the joint position of the robot. First, a dynamic model of the integrated motor and manipulator is derived. An off line parameter identification procedure is developed and applied to the University of Minnesota Direct Drive Robot. To evaluate the accuracy of the parameters the dynamic tracking of robot was tested. The trajectory errors were significantly reduced when the identified dynamic parameters were used.

  • PDF

A Practical Identification Method for Robot System Dynamic Parameters (로보트시스템 동적 변수의 실용적인 추정 방법)

  • Kim, Sungkwun
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.7
    • /
    • pp.765-772
    • /
    • 1990
  • A practical method of identifying the inertial parameters, viscous friction and Coulomb friction of a robot is presented. The parameters in the dynamic equations of a robot are obtained from the measurements of the command voltage and the joint position of the robot. First, a dynamic model of the integrated system of the mainpulator and motor is derived. An off-line parameter identification procedure is developed and applied to the University of Minnesota Direct Drive Robot. To evaluate the accuracy of the parameters the dynamic tracking of the robot was tested. The trajectroy errors were significantly reduced when the identified dynamic parameters were used.

  • PDF

A Method for Measuring Nonlinear Characteristics of a Robot Manipulator Having Two-degree-of-freedom

  • Harada, H.;Toyozawa, Y.;Kashiwagi, H.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.221-224
    • /
    • 2005
  • The authors have recently developed a method for identification of Volterra kernels of nonlinear systems by using M-sequence and correlation technique. In this paper, we apply the proposed method to identification of a robot manipulator which has two degrees of freedom. From the results of the experiment, the nonlinear characteristics of the robot manipulator can be identified by the proposed method.

  • PDF

Localization for Mobile Robots using IRID(InfraRed IDentification) (IRID를 이용한 이동로봇의 위치 추정)

  • Bae, Jung-Yun;Song, Jae-Bok;Lee, Soo-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.9
    • /
    • pp.903-909
    • /
    • 2007
  • Mobile Robots are increasingly being used to perform tasks in unknown environment. The potential of robots to undertake such tasks lies in their ability to intelligently and efficiently search in an environment. To achieve autonomous mobile robot navigation, efficient path planner and accurate localization technique are the fundamental issues that should be addressed. This paper presents mobile robot localization using IRID(InfraRed IDentification) as artificial landmarks. IRID has highly deterministic characteristics, different from RFID. By putting several IRID emitters on the ceiling, the floor is divided into many different sectors and each sector is set to have a unique identification. Dead-reckoning provides the estimated robot configuration but the error becomes accumulated as the robot travels. IRID information tells the sector the robot is in, but the size of the uncertainty is too large if only the IRID information is used. This paper presents an algorithm which combines both the encoder and the IRID information so that the size of the uncertainty becomes smaller. It also introduces a framework which can be used with other types of the artificial landmarks. The characteristics of the developed IRID and the proposed algorithm are verified from the simulation results and experiments.

Point Number Algorithm for Position Identification of Mobile Robots (로봇의 위치계산을 위한 포인트 개수 알고리즘)

  • Liu, Jiang;Son, Young-Ik;Kim, Kab-Il
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.427-429
    • /
    • 2005
  • This paper presents the use of Point Number Algorithm (PNA) for real-time image processing for position identification of mobile robot. PNA can get how many points in the image gotten from the robot vision and can calculate the distance between the robot and the wall by the number of the points. The algorithm can be applied to a robot vision system enable to identify where it is in the workspace. In the workspace, the walls are made up by white background with many black points on them evenly. The angle of the vision is set invariable. So the more black points in the vision, the longer the distance is from the robot to the wall. But when the robot does not face the wall directly, the number of the black points is different. When the robot faces the wall, the least number of the black points can be gotten. The simulation results are presented at the end of this paper.

  • PDF