• Title/Summary/Keyword: Robot Control Data

Search Result 712, Processing Time 0.032 seconds

Simulation for Shop Floor Control

  • Cho, Hyunbo
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1996.05a
    • /
    • pp.15-15
    • /
    • 1996
  • A shop floor control system (SFCS) is the central part of a CIM system used to control the activities of several pieces of manufacturing equipment (e.g., NC machines, robots, conveyors, AGVs, AS/RS). The SFCS receives orders and related process plans, and then performs selecting a specific process routing, allocating resources, scheduling the workpieces, downloading the processing instructions (e.g., RS-274 instructions for NC machines, VAL II programs for robot), monitoring the progress of activities, detecting and recovering from errors, and preparing reports on the status of the manufacturing system. Simulation has been utilized in discovering control policies used for resolving shop floor be control problems such as resource contentions, part dispatching, deadlock. The simulation model must be designed to respond to real-time data coming from a shop floor. However, to rapidly build a realtime simulation model of SFCS cannot be easily accomplished. This talk is to address an automatic program generator of discrete event simulation model for shop floor control from process plans and resource models. The program generator is capable of constructing complete discrete simulation models for multi-product and multi-stage flexible manufacturing systems.

  • PDF

Analysis of stair walking characteristics for the development of exoskeletal walking assist robot (외골격 보행보조로봇 개발을 위한 정상인의 계단보행특성 분석)

  • Cho, H.S.;Chang, Y.H.;Ryu, J.C.;Mun, M.S.;Kim, C.B.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.6 no.2
    • /
    • pp.15-22
    • /
    • 2012
  • The mechanical system of wearable walking assist robot needs to be optimized for adapting with human body structure and the planned control algorithm should have a secure procedure when a incongruity situation which can cause musculoskeletal injury occurs because a wearable robot is attached to a body. The understanding of walking or musculoskeletal motions characteristics must be preceeded and analyzed for developing novel wearable walking assist robot. In this study we tried to find out the capacities of powers and torques of joint actuators to design optimized performances of system and to obtain the analysis data to figure out the characteristics of joint movements during some types of walk. The major types of walk and motion are stair climbing and descending, sit-to-stand motion, and slope walking. In this study all these motions were analyzed experimentally except slope walking.

  • PDF

Development of Frozen Shoulder Rehabilitation Robot Based On Motion Capture Data (모션 캡쳐 데이터 기반의 오십견 재활 보조용 로봇의 개발)

  • Yang, Un-Je;Kim, Jung-Yup
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.9
    • /
    • pp.1017-1026
    • /
    • 2012
  • In this study, an exoskeleton-type robot is developed to assist frozen shoulder rehabilitation in a systematic and efficient manner for humans. The developed robot has two main features. The first is a structural feature: this robot was designed to rehabilitate both shoulders of a patient, and the three axes of the shoulder meet at one point to generate human-like ball joint motions. The second is a functional feature that is divided into two rehabilitation modes: the first mode is a joint rehabilitation mode that helps to recover the shoulder's original range of motion by moving the patient's shoulder according to patterns obtained by motion capture, and the second mode is a muscle rehabilitation mode that strengthens the shoulder muscles by suitably resisting the patient's motion. Through these two modes, frozen shoulder rehabilitation can be performed systematically according to the patient's condition. The development procedure is described in detail.

Development of Arm Motion Sensing System Using Potentiometer for Robot Arm Control (로봇 팔의 제어를 위한 포텐셜미터를 이용한 팔 움직임 감지 시스템 개발)

  • Park, Ki-Hoon;Park, Seong-Hun;Yoon, Tae-Sung;Kwak, Gun-Pyong;Ann, Ho-Kyun;Park, Seung-Kyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.4
    • /
    • pp.872-878
    • /
    • 2012
  • In this paper, an arm motion sensing system using potentiometer is developed. Most motion sensing systems use optical method for the quality of motion data. The optical method needs much cost for manufacturing capture system and takes much time for correcting the captured data. And mechanical method entails relativity low cost, but it uses the wires and takes much time for correcting the data like the optical method. For solving the problems, in this paper, an arm motion sensing system is newly developed using low cost potentiometer and based on the suggested simple calculation method for the joint angles and the angular velocities. For the verification of the performance of the developed system, practical experiments were executed using real human arm motion and a robot arm. The experimental results showed that the motion of the robot arm controlled by the output of the developed motion sensing system is much similar with the motion of human arm.

Haptics for Human-Machine Interaction at The Johns Hopkins University

  • Okamura, Allison M.;Chang, Sung-Ouk
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2676-2681
    • /
    • 2003
  • The Haptic Exploration Laboratory at The Johns Hopkins University is currently exploring many problems related to haptics (force and tactile information) in human-machine systems. We divide our work into two main areas: virtual environments and robot-assisted manipulation systems. Our interest in virtual environments focuses on reality-based modeling, in which measurements of the static and dynamic properties of actual objects are taken in order to produce realistic virtual environments. Thus, we must develop methods for acquiring data from real objects and populating pre-defined models. We also seek to create systems that can provide active manipulation assistance to the operator through haptic, visual, and audio cues. These systems may be teleoperated systems, which allow human users to operate in environments that would normally be inaccessible due to hazards, distance, or scale. Alternatively, cooperative manipulation systems allow a user and a robot to share a tool, allowing the user to guide or override the robot directly if necessary. Haptics in human-machine systems can have many applications, such as undersea and space operations, training for pilots and surgeons, and manufacturing. We focus much of our work on medical applications.

  • PDF

A stiffness control of a manipulator using a fuzzy model (퍼지몰텔을 이용한 매니퓰레이터의 강성 제어)

  • 김문주;이희진;조영완;김현태;박민용
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.11
    • /
    • pp.1-10
    • /
    • 1996
  • In this paper, we suggest a new identification method based on the takagi-sugeno fuzzy model which prepresents an envrionmental stiffness and propose a method to decide PD gains of the PD controller. It is difficult to perform a compliance task due to characteristics of robot itself and uncertain work envronment. Therefore, in this paper, we identify the fuzzy rule by dividing the relationship of input-output data into several piecewise-linear equations using the hough transform which is the one this fuzzy model, we propose a method to design the pD gain. We show the validity of this method by the experiment of tracking the surface of the paper box as an example of variable environment using robot manipulator and force sensing system. As a performance index, we use the settling time, and perform an analysis between conventional PD contorllers and this controller.

  • PDF

Robot Arm Control using Optimized Pinch Grasp Posture Based on Object Shape (물체형상 기반 로봇 팔 제어)

  • Orlando, M. Felix;Oh, Yong-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1929-1930
    • /
    • 2006
  • Human like robot arm posture for grasping by considering the shape of the target object is quite a challenge in the field of robotics. In this paper, an optimized grasp posture with respect to the shape of the object considering the wrist joint angle and elbow elevation angle, in order to verify that the grasp posture is human like has been proposed. Given a target object, the candidates for grasp are computed by the method described in this paper. For each candidate, the closed loop inverse kinematics has been solved for the corresponding hand position and orientation. From the obtained joint angles through inverse kinematics, the elbow elevation angle has been computed and compared with the elbow elevation angle obtained through human movement data by the characteristic equation. After considering all the candidates, the hand position and orientation with minimum wrist joint and difference in elbow elevation angles has been utilized as the optimized grasp posture. Simulation results are presented.

  • PDF

Bin Picking method using stereo vision (스테레오 비젼을 이용한 Bin Picking Method)

  • 주기세;한민홍
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.692-698
    • /
    • 1993
  • This paper presents a Bin-Picking method in which robot recognizes the positions and orientations of jumbled objects placed in a bin, then picks up distinctive objects from the top of the jumble. The jumbled objects are recognized comparing the characteristics extracted from stereo images with those in the CAD data. The 3-D information is obtained using the bipartite-matching method which compares image of one camera with the image of the other camera Then the robot picks up the object which will cause the least amount of disturbance to the jumble, and places it at a predetermined place. This paper contributes to the basic study of Bin-Picking, and can be used in an automatic assembly system without using part sorting or orienting devices.

  • PDF

3D scanner's measurement path establishment automation by robot simulator

  • Jang, Pyung-Su;Lee, Sang-Heon;Chang, Min-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2179-2182
    • /
    • 2005
  • Recently, optical 3D scanners are frequently used for inspection of parts, assembly and manufacturing tooling. One of the advantages is being able to measure a large area fast and accurately. Owing to recent advances in high-resolution image sensing technology, high power illumination technology, and high speed microprocessors, the accuracy and resolution of optical 3D scanners are being improved rapidly. In order to measure the entire geometry of objects, multiple scans have to be performed in various setups by moving either the objects or the scanner. This paper introduces novel methods to measure the entire geometry of objects by automatically changing the setups and then aligning the scanned data in a single coordinate system.

  • PDF

Localization of Mobile Robot using Local Map and Kalman Filtering (지역 지도와 칼만 필터를 이용한 이동 로봇의 위치 추정)

  • Lim, Byung-Hyun;Kim, Yeong-Min;Hwang, Jong-Sun;Ko, Nak-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.1227-1230
    • /
    • 2003
  • In this paper, we propose a pose estimation method using local map acquired from 2d laser range finder information. The proposed method uses extended kalman filter. The state equation is a navigation system equation of Nomad Super Scout II. The measurement equation is a map-based measurement equation using a SICK PLS 101-112 sensor. We describe a map consisting of geometric features such as plane, edge and corner. For pose estimation we scan external environments by laser rage finer. And then these data are fed to kalman filter to estimate robot pose and position. The proposed method enables very fast simultaneous map building and pose estimation.

  • PDF