• Title/Summary/Keyword: Robot Bed

Search Result 63, Processing Time 0.029 seconds

Development of Intelligent Bed Robot System

  • Oh, Chang-Mok;Seo, Kap-Ho;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1535-1538
    • /
    • 2004
  • In this paper, an Intelligent Bed Robot System (IBRS) is proposed, that is a special bed equipped with robot manipulator. To assist a patient using IBRS, pose and motion estimation process is fundamental. It is designed to help the elderly and the disabled for their independent life in bed without other assistants. For this purpose, we use the pressure sensor distributed mattress for detecting the change of motion on the bed. Using that data, we control the robot arm to move to the appropriate position and serve to the user. In addition, we can estimate the user's intention based on the change of pressure and use those data to control the robot arm guide.

  • PDF

A Study on the Color of Medical Robot Bed from the Universal Design Perspective -A Case Study on the Universal Color Design of Ninebell Corporation's Medical Robot Bed- (유니버셜 디자인 관점에서 본 의료 로봇 침대 색채에 관한 연구 -(주)나인벨의 의료용 로봇 침대의 유니버셜 디자인 색채 사례를 중심으로-)

  • Cho, Hyun Kyung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.4
    • /
    • pp.203-208
    • /
    • 2019
  • Medical color graphic research will serve as the basis for globally expanding and disseminating the design quality of the company's products through the era of production of medical robots. This study was based on technologies and contents suitable for the era of medical robot bed expansion, universal medical color application, ergonomic color, etc. In addition, the medical bed robot's color research direction was presented from the perspective of universal design. Accordingly, a universal color design was proposed, taking the functions of a medical robot under development by a domestic company as an example. The characteristics of this robot bed can be divided into three types of functions: first, treatment characteristics for prevention of pressure ulcers with curative, second, automatic seat exchange with cleanliness for medical environment, and third, Convenient, which can implement patient transport. The main idea is to present a combination of functional colors appropriate for this. The resulting color analysis and universal color design techniques could be a useful methodology for illustrating the appearance and function of a modern medical robot bed.

Face Recognition Using Tensor Subspace Analysis in Robot Environments (로봇 환경에서 텐서 부공간 분석기법을 이용한 얼굴인식)

  • Kim, Sung-Suk;Kwak, Keun-Chang
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.4
    • /
    • pp.300-307
    • /
    • 2008
  • This paper is concerned with face recognition for human-robot interaction (HRI) in robot environments. For this purpose, we use Tensor Subspace Analysis (TSA) to recognize the user's face through robot camera when robot performs various services in home environments. Thus, the spatial correlation between the pixels in an image can be naturally characterized by TSA. Here we utilizes face database collected in u-robot test bed environments in ETRI. The presented method can be used as a core technique in conjunction with HRI that can naturally interact between human and robots in home robot applications. The experimental results on face database revealed that the presented method showed a good performance in comparison with the well-known methods such as Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) in distant-varying environments.

  • PDF

Design of an Elbow Rehabilitation Robot based on Force Measurement and its Force Control (힘측정기반 팔꿈치 재활로봇 설계 및 힘제어)

  • Kim, Han-Sol;Kim, Gab-Soon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.5
    • /
    • pp.413-420
    • /
    • 2015
  • This paper describes the design of an elbow rehabilitation robot based on force measurement that enables a severe stroke patient confined to their bed to receive elbow rehabilitation exercises. The developed elbow rehabilitation robot was providewitha two-axis force/torque sensor which can detect force Fz and torque Tz, thereby allowing it to measure therotational force (Tz) exerted on the elbow and the signal force Fz which can be used as a safety device. The robot was designed and manufactured for severe stroke patients confined to bed, and the robot program was manufactured to perform flexibility elbow rehabilitation exercises. Asa result of the characteristics test of the developed rehabilitation robot, the device was safely operated while the elbow rehabilitation exercises were performed. Therefore, it is thought that the developed rehabilitation robot can be used for severe stroke patients.

Development of a Wrist Bending Rehabilitation Robot with a Three-axis Force Sensor (3축 힘 센서가 적용된 손목 굽힘 재활로봇 개발)

  • Kim, Gab-Soon
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.27-34
    • /
    • 2016
  • This paper describes the development of a rehabilitation robot that can provide wrist bending exercise to a severe stroke patient staying in a bed ward or at home. The developed rehabilitation robot has a three-axis force sensor which detects three directional force Fx, Fy, and Fz. The sensor measures a bending force (Fz) exerted on the wrist and the signal force (Fx and Fy) which can be used for the safety purpose. The robot was designed for severe stroke patients in bed, and the robot program was developed to perform a wrist bending rehabilitation exercise. In our tests including a nine-day experimental exercise, the developed force sensor-based robot operated effectively and safely.

The Control System of a Robot Bed for Caring Pressure Ulcer

  • Kim, Jungae;Lee, Youngdae;Cho, Hyunkyung
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.3
    • /
    • pp.254-259
    • /
    • 2020
  • The medical bed developed in this study is an electrically driven segmental keyboard. First describe the instrument of the segmental bed specially designed for pressure ulcer prevention, then the motor control system and pressure ulcer prevention operation of the bed. The main factor of pressure ulcer generation is displayed as body pressure x time, and when the keyboard falls, the body pressure becomes zero, and the pressure becomes higher than the threshold even if the body pressure is above the threshold, the pressure control algorithm has been developed. Therefore, using the proposed pressure control method, it has no particular ulcer occurred theoretically.

Calculating Water Volume of Reservoir using Robot-ship (로봇선을 이용한 저수량 산정에 관한 연구)

  • Choi, Byoung-Gil;Lee, Byung-Gul;Kang, Moon-Sun;Dolgorjav, Dolgorjav
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2007.04a
    • /
    • pp.51-54
    • /
    • 2007
  • This study is aimed to acquire the depth information and measure the water volume of reservoir using the robot-ship equipped with GPS and echosounder. Robot-ship is an automatic system for measuring exact depth and bed topography. According to field experiment results, measured water volume by the robot-ship data was not much exceeding 6.8% in comparison with existing water volume data, and it was guessed because of sediments of reservoir bottom. The robot-ship could be used to acquire economically and exactly the water depth and bed topography of reservoirs, dams, rivers and so on.

  • PDF

Study on the Failure Diagnosis of Robot Joints Using Machine Learning (기계학습을 이용한 로봇 관절부 고장진단에 대한 연구)

  • Mi Jin Kim;Kyo Mun Ku;Jae Hong Shim;Hyo Young Kim;Kihyun Kim
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.113-118
    • /
    • 2023
  • Maintenance of semiconductor equipment processes is crucial for the continuous growth of the semiconductor market. The process must always be upheld in optimal condition to ensure a smooth supply of numerous parts. Additionally, it is imperative to monitor the status of the robots that play a central role in the process. Just as many senses of organs judge a person's body condition, robots also have numerous sensors that play a role, and like human joints, they can detect the condition first in the joints, which are the driving parts of the robot. Therefore, a normal state test bed and an abnormal state test bed using an aging reducer were constructed by simulating the joint, which is the driving part of the robot. Various sensors such as vibration, torque, encoder, and temperature were attached to accurately diagnose the robot's failure, and the test bed was built with an integrated system to collect and control data simultaneously in real-time. After configuring the user screen and building a database based on the collected data, the characteristic values of normal and abnormal data were analyzed, and machine learning was performed using the KNN (K-Nearest Neighbors) machine learning algorithm. This approach yielded an impressive 94% accuracy in failure diagnosis, underscoring the reliability of both the test bed and the data it produced.

  • PDF

Development of Remote Control Robot-ship for Measuring Water Depth (원격수심측정을 위한 로봇시스템의 개발)

  • Choi, Byoung-Gil;Cho, Kwang-Hee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.23 no.4
    • /
    • pp.409-417
    • /
    • 2005
  • This study is aimed to develop a remote control robot-ship system using wireless communication and DGPS, which it is an automatic system for measuring exact depth and bed topography of reservoir or dam. Robot-ship is equipped with GPS and echosounder, and it is controled remotely using wireless internet. Robot-ship is consist of frame, each module and control board. Control segment is consisted of a processing system for positioning data and remote control system. A wireless communication system is developed which can communicate interactively between robot-ship and control segment, and it is developed in two channel system of RF modem and wireless internet. The robot-ship could be used acquire economically and exactly the water depth and bed topography of reservoirs, dams, rivers and so on.

The test bed for teleoperated space robot (우주로봇 원격제어 테스트 베드)

  • 김동구;박종오
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.760-763
    • /
    • 1997
  • Using telesensor programming method, we control the space robot which has two 2-DOF manipulators. To make this control system, we devide total works by elemental operation. And we make a simulation system that can simulate sensors and robot. In the simulation system, we make a sensor data and robot paths by "Teaching by showing" method. And using these data, we control the real space robot. This off-line method can solve long time delay problem in teleoperation.operation.

  • PDF