• Title/Summary/Keyword: Roadway Design

Search Result 154, Processing Time 0.027 seconds

A Study on Mechanical Characteristics of Fiber Modified Emulsified Asphalt Mixture as Environmentally-Friend Paving Material (섬유보강 친환경 상온아스팔트 혼합물의 역학적 특성에 관한 연구)

  • Rhee Suk-Keun;Park Kyung-Won
    • International Journal of Highway Engineering
    • /
    • v.8 no.2 s.28
    • /
    • pp.23-30
    • /
    • 2006
  • Emulsified Asphalt Mixture(EAM) is more environmentally-friendly and cost-effective than typical Hot Mix Asphalt (HMA) because EAM does not produce carcinogenic substances, e.g., naphtha, kerosene, during the both of manufacturing and roadway construction process. Also, it does not require heating the aggregates and asphalt binder. However, EAM has some disadvantages. Generally EAM has a less load bearing capacity and more moisture susceptibility than conventional HMA. The study evaluated a Fiber modified EAM (FEAM) to increase load bearing capacity and to decrease moisture susceptibility of EAM. Modified Marshall mix design was developed to find Optimum Emulsion Contents (OEC), Optimum Water Contents (OWC), and Optimum Fiber Contents (OFC). A series of test were performed on the fabricated specimen with OBC, OWC, and OFC. Tests include Marshall Stability, Indirect Tensile Strength, and Resilient modulus test. Comparison analyses were performed among EAM, Fiber modified EAM (FEAM), and typical HMA to verify the applicability of EAM and FEAM in the field. Test results indicated that both of EAM and FEAM have an enough capability to resist medium traffic volume based on the Marshall mix design criteria. Also the study found that fiber modification is effective to increase the load bearing capacity and moisture damage resistance of EAM.

  • PDF

Experimental Study of Frost Heaving using Temperature Controlled Triaxial Cell (투명 온도제어형 삼축셀을 이용한 흙의 동상 실내실험)

  • Ryu, Byung-Hyun;Jin, Hyun-Woo;Lee, Jangguen
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.6
    • /
    • pp.23-31
    • /
    • 2016
  • Nowadays abnormal coldness happens frequently in Korea and frost heaving causes unexpected ground deformation which results in severe problems for structures such as roadway, railroad and cutoff slope. 'Frost heave' as one of the primary phenomenon is considered to be an important factor together with 'adfreeze bond-strength' and 'creep deformation' for structural design process in permafrost area. Therefore, the fundamental study for frost heave has to be preceded for design of geo-structures in cold region. While various experimental apparatuses have been developed, there still exist a certain level of limitation to evaluate the frost-heave characteristics as design parameters. There are no standard testing method and criteria for analyzing frost heaving in Korea because temperature controlled testing apparatuses including a freezing chamber are expensive. In this paper, a new standard freezing and thawing testing apparatus is introduced, which simulates various freezing and thawing conditions in a soil specimen by using a temperature controlled triaxial cell. Frost heaving tests were performed to assess the new testing apparatus and experimental procedure to evaluate frost heaving for soils is proposed.

Cost Prediction Models in the Early Stage of the Roadway Planning and Designbased on Limited Available Information (가용정보를 활용한 기획 및 설계초기 단계의 도로 공사비 예측모델)

  • Kwak, Soo-Nam;Kim, Du-Yon;Kim, Byoung-Il;Choi, Seok-Jin;Han, Seung-Heon
    • Korean Journal of Construction Engineering and Management
    • /
    • v.10 no.4
    • /
    • pp.87-100
    • /
    • 2009
  • The quality of early cost estimates is critical to the feasibility analysis and budget allocation decisions for public capital projects. Various researches have been attempted to develop cost prediction models in the early stage of a construction project. However, existing studies are limited on its applicability to actual projects because they focus primarily on a specific phase as well as utilize restricted information while the amount of information collectable differs from one another along with the project stages. This research aims to develop two-staged cost estimation model for the schematic planning and preliminary design process of a construction projects, considering the available information of each phase. In the schematic planning stage where outlined information of a project is only available, the Case-Based Reasoning model is used for easy and rapid elicitation of a project cost based on the extensive database of more than 90 actual highway construction projects. Then, the representing quantity-based model is proposed for the preliminary design stage where more information on the quantities and unit costs are collectable based on the alternative routes and cross-sections of a highway project. Real case studies are used to demonstrate and validate the benefits of the proposed approach. Through the two-stage cost estimation system, users are able to hold a timely prospect to presume the final cost within the budge such that feasibility study as well as budget allocation decisions are made on effectively and competitively.

Clustering Analysis of Walking Characteristics of Elderly People for Use in Pedestrian Facilities Design (보행시설 설계시 활용을 위한 고령자 보행특성 군집화 연구)

  • ROH, Chang-Gyun;PARK, Bum jin;MOON, Byungsup
    • Journal of Korean Society of Transportation
    • /
    • v.34 no.5
    • /
    • pp.409-420
    • /
    • 2016
  • Korea is expected to enter 'Super Aged Society' in 2026. However, as walking is the very basic human right of mobility, securing safe and convenient moving of elderly people comprising the majority of transportation vulnerable is thought to be the most basic welfare, which can be easily neglected. From this perspectives, this study provides the walking characteristics of elderly people to be used in design of pedestrian facilities. The analysis of the measurements using Motion Analysis Systems shows that all walking factors of elderly people is 75% level of the younger group. Elderly group shows slower movement, reduced shoulder movement and increased ankle movement compared to the others. Also, foots are risen less and ground repulsive force is increased. Cluster analysis shows that the group of the elderly shows high variability inside the group, and 2 or 3 clusters can be formed with factors of Walking, Balance and Muscles. These walking characteristics can be used in designing pedestrian road, slope and step height of roadway facilities.

Microscopic Study on the Warrants for TWLTL Based on the DHV - Focusing on the Section with Overlapping Left-turn Movements - (설계시간 교통량 기반 양방향 좌회전차로의 설치기준에 관한 미시적 연구 - 좌회전 상충이 발생하는 구간을 중심으로 -)

  • Lee, Ji-Sun;Shin, Chi-Hyun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.13 no.5
    • /
    • pp.1-10
    • /
    • 2014
  • This research focuses on the warrants for the Two-Way Left-Turn Lanes (TWLTL). Using a microscopic traffic simulation tool, two key parameters were investigated herewith. One is a wide range of the Design Hourly Volume (DHV), reflective of recent Korean roadway volume characteristics, that is conventionally reduced from the Average Daily Traffic (ADT). The other is driveway spacing, the length of the middle-lane section where two conflicting left-turn demands often compete for space. In addition, unlike previous researches, the way and the procedure the TWLTL operation is realized in the VISSIM S/W with its add-on application such as VISVAP is clearly stated and described in detail. According to the result of simulations for 10 volume scenarios, as expected, the higher the volume level is, the more delay the left-tuner experience. The Level Of Service (LOS) for most cases was in the range of C and D based on the non-signalized intersection LOS criteria. Furthermore, the TWLTL was found operable up to the volume level of 1,116 and 1,860 vph in heavy direction (equivalent of volume level 7) for 3-lane and 5-lane facility respectively, which covers significant portion of existing two to four-lane highway volumes in Korea.

Dynamic Load Allowance of Highway Bridges by Numerical Dynamic Analysis for LRFD Calibration (LRFD 보정을 위한 동적해석에 의한 도로교의 동적하중허용계수)

  • Chung, Tae Ju;Shin, Dong-Ku;Park, Young-Suk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3A
    • /
    • pp.305-313
    • /
    • 2008
  • A reliability based calibration of dynamic load allowance (DLA) of highway bridge is performed by numerical dynamic analysis of various types of bridges taking into account of the road surface roughness and bridge-vehicle interaction. A total of 10 simply supported bridges with three girder types in the form of prestressed concrete girder, steel plate girder, and steel box girder is analyzed. The cross sections recommended in "The Standardized Design of Highway Bridge Superstructure" by the Korean Ministry of Construction are used for the prestressed concrete girder bridges and steel plate girder bridges while the box girder bridges are designed by the LRFD method. Ten sets of road surface roughness for each bridge are generated from power spectral density (PSD) function by assuming the roadway as "Average Road". A three dimensionally modeled 5-axle tractor-trailer with its gross weight the same as that of DB-24 design truck is used in the dynamic analysis. For the finite element modeling of superstructure, beam elements for the main girder, shell elements for concrete deck, and rigid links between main girder and concrete deck are used. The statistical mean and coefficient of variation of DLA are obtained from a total of 100 DLA results for 10 different bridges with each having 10 sets of road surface roughness. Applying the DLA statistics obtained, the DLA is finally calibrated in a reliability based LRFD format by using the formula developed in the calibration of OHBDC code.

Design of Truck Escape Ramps (자동차 긴급 피난 차선의 계획 설계)

  • 구본충
    • Journal of the Korean Professional Engineers Association
    • /
    • v.28 no.4
    • /
    • pp.54-75
    • /
    • 1995
  • This synthesis has been prepared from a review of literature on Truck Escape Ramps technology and a survey of current practice by state department of transportation. Their locations have been determined usually from a combination of accident experience and en-gineering judgement, but new tools are emerging that can identify needs and sites without waiting for catastrophic accidents to happen. The Grade Severity Rating Systems holds promise in this regard. Design Procedures for truck excape ramps continue to evolve. Gravel arrester beds are clearly the preferred choice across the country Rounded aggregate, uniformly graded in the approximate size range of 13 to 18mm. Tech-nical publications typically have dassified TER types as paved gravity, sandpile, and ar-rester bed ramps. The design speed for vehicle entry into the ramp in critical to the deter-mination of ramp length. An escape ramp should be designed for a minimum entry speed of 130km/hr, a 145km/hr design being preferred. The ramps should be straight and their angle to the roadway align-ment should be as possible. The grade of truck escape ramps show the adjustment of ramp design to local topography, such as the tradeoff of ramp length against earthwork requirements. A width of 9 to 12m would more safety acommodate two or more outof con-trol vehicles. Reguarding comments on the most effective material, most respondents cited their own specification or referred to single graded, rounded pea gravel. The consensus essentially Is that single graded, well -rounded gravel is the most desirable material for use in arrester beds. The arrester beds should be constructed with a minimum aggregate depth of 30cm. Successful ramps have used depths between 30 and 90cm.

  • PDF

A Study on the Test Construction Evaluation and Noise and Vibration Characteristics of Wireless Low-Floored Trams Trackway (무가선 저상트램 노면선로의 시험시공 평가와 소음·진동 특성연구)

  • Jeong, Young Do;An, Dong Geun;Jun, Jin Taek;Jeong, Woo Tae;Lee, Su Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.6
    • /
    • pp.143-154
    • /
    • 2012
  • The wireless low-floored tram is an innovative transportation system which is environment-friendly and highly energy-efficient. In addition, the system has various advantages such as low construction cost, improvement of urban landscape, revitalization of surrounding commercial area, elevated convenience for passengers, etc. Therefore, more than ten local governments have proposed tram construction projects in Korea. Accordingly, many research and development projects are ongoing funded by government including the developments of tram vehicle, tram trackway, signal system, etc. The embedded rail system are commonly used in order to provide leveled roadway surface in urban area. It is effective to reduce the noise and vibration, caused at the interface between the wheel and track, to minimize the construction period, and to lower the maintenance cost. This paper investigated the design and construction processes for tram trackway and figured out the constructability for the test track with embedded rail system for the first time in Korea. The performance to reduce the noise and vibration were quantitatively measured in the test track with embedded rail system. In addition, the results were compared to the ones for track with conventional rail system.

Seismic Performance Analysis of RC Piers with Lap-spliced Reinforced Steel and Differentiated Aspect Ratios (주철근 겹침이음 및 형상비에 따른 철근콘크리트 교각의 내진거동 분석)

  • Cho, Chang-Beck;Shin, Ho-Jin;Kwahk, Im-Jong;Chung, Young-Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.5
    • /
    • pp.41-53
    • /
    • 2012
  • The objective of this study is to evaluate the seismic capacity of RC piers with small aspect ratios. Test specimens were selected from the prototype piers among existing national roadway bridges which are expected to fail in shear and/or complex shear-flexural mode. Two groups of full scale RC pier models were constructed with aspect ratios of 2.25 and 2.67. Quasi-static tests have been implemented to investigate the failure behavior of the RC piers in terms of the lap-spliced longitudinal reinforcing steel and the aspect ratio. It is confirmed that regarding its shear-flexural behavior, the pier is very sensitive to the aspect ratio or details. In the case of a test pier with highly lap-spliced longitudinal bars, the bond failure of lap-splice steels was the dominant cause of failure before the occurrence of flexure or shear-flexural failure, despite a slight change in the aspect ratio. Finally, based on the test results and analysis, this paper proposes formulas for the yielding and ultimate displacements of circular reinforced concrete bridge piers without seismic details. These formulas will be useful for the investigation and upgrade of the seismic capacity of bridge piers without seismic details.

Durability and Strength of Dense Grate Permeable Concrete Using Silica sand and Flexible Alkyd Resin (유변성(油變性) 알키드 수지(樹脂)와 규사(硅砂)를 사용(使用)한 밀입도(密粒度) 투수(透水)콘크리트의 강도(强度) 및 내구특성(耐久特性))

  • Kim, In-Jung;Hong, Chang-Woo
    • Resources Recycling
    • /
    • v.19 no.6
    • /
    • pp.36-42
    • /
    • 2010
  • Researches on resources recycling in the field of construction have made an extensive progress such as recycled aggregate of waste concrete and recycling of asphalt. On the other hand, there are almost never researches on pavement method with used waste frying oil. In South Korea, 0.2 million ton used waste frying oil is discharged every year. It is guessed that about 0.1 million ton used waste frying oil can be collected. If used waste frying oil is recycled, it is expected that disuse cost will be reduced and water pollution of rivers will be prevented. Therefore, the purpose of the study was to evaluate on mechanical features (strength, water resistance, chemical resistance, abrasion resistance, freezing and thawing resistance and permeable coefficient) whether dense graded permeable concrete mixing silica sand with flexible alkyd resin manufactured by making ester reaction with collected used waste frying oil to make alkyd resin could be applied to road pavement for non-roadway. The results of the study were as follows. In flexural strength, it had 1.6 times as much as road design standard 4.5MPa. In water resistance, chemistry resistance and freezing and thawing resistance, they had lack of strength in early age. As age went by, they didn't have large changes. And curing temperature had phenomenon of increase in strength at rather low temperature than high temperature by glass transition temperature of resin. Therefore, considering workability, strength and durability when it was applied to road pavement, it was reasonable that the mixing ratio of flexible alkyd resin was 10~15% in comparison with silica sand weight.