• Title/Summary/Keyword: Road modeling

Search Result 376, Processing Time 0.029 seconds

An Estimation on Area Error For Surface Roughness Advancement of Rapid Prototype by FDM (FDM에서 단면오차법을 이용한 표면예측)

  • 전재억;김수광;황양오;박후명;하만경
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1869-1872
    • /
    • 2003
  • As SLA(Sterealithography), SLS(Selective Laser Sintering), LOM(Laminated Object Manufacturing), FDM(Fused Deposition Modeling) etc. The FDM system the heart of a study and is developed by Stratasys co. ltd, in US., is small and cheap R.P. The material filament is heated until the material reaches a near-liquid state, it is pumped through a nozzle and become hand with a shape required, and this nozzle move pumping on the previously deposited material. Such FDM system that choice deposition type with X-Y plouter obtain in the thin continue layer by decreasing amount of extrusion or to central the injection amount when the head slow down at the corner, but in the process that fusion wax or resin become hand, deformation occur and it will affect the shape accuracy and the surface roughness. Such effect will depreciate quality and reliability of the product. Therefore, when the product made in actuality, the fundamental study on the basis geometry(surface, volume, line, angle) must be preceded and it have been research by many Free Form Fabrication. So, this basic object study purpose to obtain the fundamental geometry data and to enhance the surface roughness of the shape. And an operant can use the data for the progress of the surface roughness. This study research the estimation and application of the prototype surface roughness by adjustment the injection amount. And basie of this research, describe the pattern of prototype surface roughness and also used the result to estimate the surface of prototype.

  • PDF

Mathematical Modeling & Empirical Analysis for Estimation of Fuel Consumption using OBD-II Data in Vehicle (차량 OBD-II 데이터를 이용한 연료 소모량 추정의 수식적 모델링 및 실증 분석)

  • Lee, Min-Goo;Park, Yong-Guk;Jung, Kyung-Kwon;Yoo, Jun-Jae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.2
    • /
    • pp.9-14
    • /
    • 2011
  • This Paper proposed the prediction method of fuel consumption from vehicle informations through OBD-II Interface. We assumed RPM, TPS had a relationship with fuel consumption. We got the output as fuel-consumption from a vehicle RPM, TPS as input by using polynomial equation. We had modelling as quadric function with OBD-II data and fuel consumption data supported by automotive company in real. In order to verify the effectiveness of proposed method, 5 km real road-test was performed. The results showed that the proposed method can estimate precisely the fuel consumption from vehicle multi-data.

3D Wave Propagation Loss Modeling in Mobile Communication using MLP's Function Approximation Capability (MLP의 함수근사화 능력을 이용한 이동통신 3차원 전파 손실 모델링)

  • Yang, Seo-Min;Lee, Hyeok-Jun
    • Journal of KIISE:Software and Applications
    • /
    • v.26 no.10
    • /
    • pp.1143-1155
    • /
    • 1999
  • 셀룰러 방식의 이동통신 시스템에서 전파의 유효신호 도달범위를 예측하기 위해서는 전파전파 모델을 이용한 예측기법이 주로 사용된다. 그러나, 전파과정에서 주변 지형지물에 의해 발생하는 전파손실은 매우 복잡한 비선형적인 특성을 가지며 수식으로는 정확한 표현이 불가능하다. 본 논문에서는 신경회로망의 함수 근사화 능력을 이용하여 전파손실 예측모델을 생성하는 방법을 제안한다. 즉, 전파손실을 송수신 안테나간의 거리, 송신안테나의 특성, 장애물 투과영향, 회절특성, 도로, 수면에 의한 영향 등과 같은 전파환경 변수들의 함수로 가정하고, 신경회로망 학습을 통하여 함수를 근사화한다. 전파환경 변수들이 신경회로망 입력으로 사용되기 위해서는 3차원 지형도와 벡터지도를 이용하여 전파의 반사, 회절, 산란 등의 물리적인 특성이 고려된 특징 추출을 통해 정량적인 수치들을 계산한다. 이와 같이 얻어진 훈련데이타를 이용한 신경회로망 학습을 통해 전파손실 모델을 완성한다. 이 모델을 이용하여 서울 도심 지역의 실제 서비스 환경에 대한 타 모델과의 비교실험결과를 통해 제안하는 모델의 우수성을 보인다.Abstract In cellular mobile communication systems, wave propagation models are used in most cases to predict cell coverage. The amount of propagation loss induced by the obstacles in the propagation path, however, is a highly non-linear function, which cannot be easily represented mathematically. In this paper, we introduce the method of producing propagation loss prediction models by function approximation using neural networks. In this method, we assume the propagation loss is a function of the relevant parameters such as the distance from the base station antenna, the specification of the transmitter antenna, obstacle profile, diffraction effect, road, and water effect. The values of these parameters are produced from the field measurement data, 3D digital terrain maps, and vector maps as its inputs by a feature extraction process, which takes into account the physical characteristics of electromagnetic waves such as reflection, diffraction and scattering. The values produced are used as the input to the neural network, which are then trained to become the propagation loss prediction model. In the experimental study, we obtain a considerable amount of improvement over COST-231 model in the prediction accuracy using this model.

Three-Dimensional Laboratory Experiments for Tsunami Inundation in a Coastal City (지진해일 범람이 해안도시에 미치는 영향에 대한 3차원 수리모형실험)

  • Kim, Kyuhan;Park, Hyoungsu;Shin, Sungwon;Cox, Daniel T.
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.6
    • /
    • pp.400-403
    • /
    • 2012
  • Laboratory experiments were conducted for tsunami inundation to an urban area with large building roughness. The waterfront portion of the city of Seaside which is located on the US Pacific Northwest coast, was replicated in 1/50 scale in the wave basin. Tsunami heights and velocities on the inundated land were measured at approximately 31 locations for one incident tsunami heights with an inundation height of approximately 10 m (prototype) near the shoreline. The inundation pattern and speed were more severe and faster in some areas due to the arrangement of the large buildings. Momentum fluxes along the roads were estimated using measure tsunami inundation heights and horizontal fluid velocities. As expected, the maximum momentum flux was near the shoreline and decreased landward. Inundation heights and momentum flux were slowly decreased through the road with buildings on each side. The results from this study showed that the horizontal inundation velocity is an important factor for the external force of coastal structures.

A Simulation Model for Evaluating Demand Responsive Transit: Real-Time Shared-Taxi Application (수요대응형 교통수단 시뮬레이션 방안: Real-Time Shared-Taxi 적용예시)

  • Jung, Jae-Young
    • International Journal of Highway Engineering
    • /
    • v.14 no.3
    • /
    • pp.163-171
    • /
    • 2012
  • Demand Responsive Transit (DRT) services are becoming necessary as part of not only alternative transportation means for elderly and mobility impaired passengers, but also sustainable and flexible transportation options in urban area due to the development of communication technologies and Location Based Services (LBS). It is difficult to investigate the system performance regarding vehicle operational schemes and vehicle routing algorithms due to the lack of commercial software to support door-to-door vehicle simulation for larger area. This study proposes a simulation framework to evaluate innovative and flexible transit systems focusing on various vehicle routing algorithms, which describes data-type requirements for simulating door-to-door service on demand. A simulation framework is applied to compare two vehicle dispatch algorithms, Nearest Vehicle Dispatch (NVD) and Insertion Heuristic (IH) for real-time shared-taxi service in Seoul. System productivity and efficiency of the shared-taxi service are investigated, comparing to the conventional taxi system.

An Improvement of Bottom Up Approach for Estimating the Mobile Emission Level (도로이동오염원 배출량 산정을 위한 Bottom-Up Approach 기법의 개선에 관한 연구)

  • Choe, Gi-Ju;Lee, Gyu-Jin;An, Seong-Chae
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.4
    • /
    • pp.183-193
    • /
    • 2009
  • Air pollution due to vehicle exhaust gas is considered to be a main contributor to the issues of transportation & environment. Furthermore it is raising concern over life quality and public health and is also perceived as a global issue. This research aims at providing helping hands for both central and local governments to set up and promote efficient atmospheric quality improvement policies, with the help of the travel demand forecasting model and GIS. More specifically, it tries to produce the overall emission level with time and space-based high resolution framework. This research, based on bottom-up approach reflecting vehicular traffic characteristics, suggested an improved approach to estimating emission level, by using a traffic model with a total of vehicular mileage revised by surveyed value and atmosphere model. Summing up, using the method proposed, the improvement of the reliability of the emissions inventory from the mobile pollutions sources is expected by the proposed integrated paradigm of transportation and atmosphere modeling approach as a new alternative.

Estimating Utility Function of In-Vehicle Traffic Safety Information Incorporating Driver's Short-Term Memory (운전자 단기기억 특성을 고려한 차내 교통안전정보의 효용함수 추정)

  • Kim, Won-Cheol;Fujiwara, Akimasa;Lee, Su-Beom
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.4
    • /
    • pp.127-135
    • /
    • 2009
  • Most traffic information that drivers receive while driving are stored in their short-term memory and disappear within a few seconds. Contemporary modeling approaches using a dummy variable can't fully explain this phenomenon. As such, this study proposes to use utility functions of real-time in-vehicle traffic safety information (IVTSI), analyzing its safety impacts based on empirical data from an on-site driving experiment at signalized intersection approach with a limited visibility. For this, a driving stability evaluation model is developed based on driver's driving speed choice, applying an ordered probit model. To estimate the specified utility functions, the model simultaneously accounts for various factors, such as traffic operation, geometry, road environment, and driver's characteristics. The results show three significant facts. First, a normal density function (exponential function) is appropriate to explain the utility of IVTSI proposed under study over time. Second, the IVTSI remains in driver's short-term memory for up to nearly 22 second after provision, decreasing over time. Three, IVTSI provision appears more important than the geometry factor but less than the traffic operation factor.

Analysis of Traversable Candidate Region for Unmanned Ground Vehicle Using 3D LIDAR Reflectivity (3D LIDAR 반사율을 이용한 무인지상차량의 주행가능 후보 영역 분석)

  • Kim, Jun;Ahn, Seongyong;Min, Jihong;Bae, Keunsung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.11
    • /
    • pp.1047-1053
    • /
    • 2017
  • The range data acquired by 2D/3D LIDAR, a core sensor for autonomous navigation of an unmanned ground vehicle, is effectively used for ground modeling and obstacle detection. Within the ambiguous boundary of a road environment, however, LIDAR does not provide enough information to analyze the traversable region. This paper presents a new method to analyze a candidate area using the characteristics of LIDAR reflectivity for better detection of a traversable region. We detected a candidate traversable area through the front zone of the vehicle using the learning process of LIDAR reflectivity, after calibration of the reflectivity of each channel. We validated the proposed method of a candidate traversable region detection by performing experiments in the real operating environment of the unmanned ground vehicle.

Freeway Capacity Estimation for Traffic Control (교통제어를 위한 고속도로 용량 산정에 관한 연구)

  • Kim, Jum-San;Kho, Seung-Young
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.3 s.81
    • /
    • pp.137-147
    • /
    • 2005
  • This study is to define new road capacity concept, and to develop and propose an estimation method, through the analysis of individual vehicular behaviors in continuum flow. Developments in detection technology enable various and precise traffic data collection. The U.S. HCM (Highway Capacity Manual) method does not require such various and precise traffic data, and outputs only limited results. Alternative capacity concepts, which can be classified into a stochastic model and behavioral or deterministic model, are attempts for modeling some prominent traffic flow features, namely so-called a capacity drop and a traffic hysteresis, using such various and precise traffic data. Yet, no capacity concept up-to-date can describe both features. The analysis of individual vehicular behaviors, including speed-density plot per time lap, traffic flow-speed-density diagram per each sampling interval, time headway distribution, and free flow speed distribution, is performed for overcoming the limits of the previous capacity concepts. A stochastic methods are applied to determine time headway for estimating freeway capacity for traffic control.

Co-Channel Interference Mitigation and System Throughput Maximization Using Hybrid Joint Reuse Partitioning in Multimedia Mobile Communications (멀티미디어 이동 통신에서 Hybrid Joint 주파수 재사용 구간을 이용한 동일 채널 간섭 억제 및 시스템 전송량 최대화 방법)

  • Kim, Jeong-Su
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.5 s.120
    • /
    • pp.465-470
    • /
    • 2007
  • The co-channel interference is a primary factor of loss in multimedia mobile communications. In this paper, we present a performance of the frequency reuse partitioning to refrain the co-channel interference and maximize system performance. First, we analyze the co-channel interference using the frequency reuse partitioning through the statistical modeling. From this results, we decide on the frequency reuse partitioning for the system throughput which is maximized. Finally, analysis and simulation results show that the frequency reuse partitioning based cellular system can mitigate the co-channel interference and maximize the system throughput. The experimental results show that system throughput is maximized from 0.7 to 0.8 according to traffic road. We can maximize the system throughput using the results with cellular system design parameter.