• Title/Summary/Keyword: Road geometry

Search Result 159, Processing Time 0.025 seconds

Development of A Vision-based Lane Detection System with Considering Sensor Configuration Aspect (센서 구성을 고려한 비전 기반 차선 감지 시스템 개발)

  • Park Jaehak;Hong Daegun;Huh Kunsoo;Park Jahnghyon;Cho Dongil
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.4
    • /
    • pp.97-104
    • /
    • 2005
  • Vision-based lane sensing systems require accurate and robust sensing performance in lane detection. Besides, there exists trade-off between the computational burden and processor cost, which should be considered for implementing the systems in passenger cars. In this paper, a stereo vision-based lane detection system is developed with considering sensor configuration aspects. An inverse perspective mapping method is formulated based on the relative correspondence between the left and right cameras so that the 3-dimensional road geometry can be reconstructed in a robust manner. A new monitoring model for estimating the road geometry parameters is constructed to reduce the number of the measured signals. The selection of the sensor configuration and specifications is investigated by utilizing the characteristics of standard highways. Based on the sensor configurations, it is shown that appropriate sensing region on the camera image coordinate can be determined. The proposed system is implemented on a passenger car and verified experimentally.

CFD/Kirchhoff Integral Method for the Prediction of the Air-Pumping Noise by a Car Tyre (CFD/Kirchhoff 적분 방법을 이용한 자동차 타이어의 Air-Pumping 소음 예측)

  • Kim, Sung-Tae;Lee, Soo-Gab
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.916-919
    • /
    • 2004
  • The monopole theory has long been used to model air-pumped effect from the elastic cavities in car tire. This approach models the change of an air as a piston moving backward and forward on a spring and equates local air movements exactly with the volume changes of the system. Thus, the monopole theory has a restricted domain of applicability due to the usual assumption of a small amplitude acoustic wave equation and acoustic monopole theory. This paper describes an approach to predict the air-pumping noise of a car ave with CFD/Kirchhoff integral method. The type groove is simply modeled as piston-cavity-sliding door geometry and with the aid of CFD technique flow properties in the groove of rolling car tyre are acquired. And these unsteady flow data are used as a air-pumping source in the next Cm calculation of full tyre-road geometry. Acoustic far field is predicted from Kirchhoff integral method by using unsteady flow data in space and time, which is provided by the CFD calculation of full tyre-road domain. This approach can cover the non-linearity of acoustic monopole theory with the aid of using Non-linear governing equation in CFD calculation. The method proposed in this paper is applied to the prediction of air-pumping noise of modeled car tyre and the predicted results are qualitatively compared with the experimental data.

  • PDF

A Development of the Operating Speed Estimation Model of Truck on Four-lane Rural Highway (지방부 일반국도 4차로의 화물차 주행속도 예측모형 개발)

  • Park, Min Ho;Lee, Geun Hee
    • International Journal of Highway Engineering
    • /
    • v.16 no.5
    • /
    • pp.173-182
    • /
    • 2014
  • PURPOSES : The purpose of the study is to a) explore the operating speed of trucks on rural highways affected by road geometry, and thereby b) develop a predictive model for the operating speed of trucks on rural highways. METHODS : Considering that most of the existing studies have focused on cars, the current study aimed to predict the operating speed of trucks by conducting linear regression analysis on the speed data of trucks operating on the linear-curved-linear portions of the road as a single set. RESULTS : The operating speed in the plane curve portion increased with the length of the curve, and decreased with a lower vertical grade and a smaller curve radius. In the straight plane portion, the operating speed increased with a larger curve radius(upstream), and decreased with an increase in the change of the vertical grade, depending on the length of the vertical curve. CONCLUSIONS : This study developed estimation models of truck for operational speed and evaluated the degree of safety for horizontal and vertical alignments simultaneous. In order to represent whole area of the rural highway, the models should be ew-analyzed with vast data related with road alignment factor in the near future.

Preliminary Evaluation of Subsurface Cavity and Road Cave-in Potentials Based on FWD Deflections (FWD 처짐량 기반 도로 공동 및 함몰 위험도 평가 기초 연구)

  • Kim, Tae-Woo;Yoon, Jin-Sung;Lee, Chang Min;Baek, Jongeun;Choi, Yeon-Woo
    • International Journal of Highway Engineering
    • /
    • v.19 no.5
    • /
    • pp.59-68
    • /
    • 2017
  • PURPOSES : The objective of this study is to evaluate the potential risk level of road cave-ins due to subsurface cavities based on the deflection basin measured with falling weight deflectometer (FWD) tests. METHODS: Ground penetrating radar (GPR) tests were conducted to detect road cavities. Then FWD tests were conducted on 13 pavement test sections with and without a cavity. FWD deflections and a deflection ratio was used to evaluate the effect of geometry of the cavity and pavement for road cave-in potentials. RESULTS : FWD deflection of cavity sections measured at 60 cm or a closer offset distance to a loading center were 50% greater than more robust sections. The average deflection ratio of the cavity sections to robust sections were 1.78 for high risk level cavities, 1.51 for medium risk level cavities, and 1.16 for low risk level cavities. The relative remaining service life of pavement with a cavity evaluated with an surface curvature index (SCI) was 8.1% for the high level, 21.8% for the medium level, and 89.8% compared to pavement without a cavity. CONCLUSIONS : FWD tests can be applied to detect a subsurface cavity by comparing FWD deflections with and without a cavity measured at 60 cm or a closer offset distance to loading center. In addition, the relative remaining service life of cavity sections based on the SCI can used to evaluate road cave-in potentials.

A Study on the development of GEOCON for the Geometry Control of Precast Segmetnal Bridges (II) (프리캐스트 세그멘탈 교량의 선형관리를 위한 GEOCON의 개발에 관한 연구(II))

  • 이환우;김종수;곽효경
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.2
    • /
    • pp.127-135
    • /
    • 1998
  • 프리캐스트 세그멘탈 교량의 3차원적인 선형관리를 수행할 수 있는 S/W로서 GEOCON이 개발되었다. GEOCON은 기본적으로 제작장에서 세그멘트 제작관리를 통한 선형관리를 실시하고, 그 결과로서 자동적으로 계산되는 제작선형은 가설시 선형관리에 활용된다. 본 논문에서는 실제 현장에서 나타날 수 있는 검측오차등으로 인하여 수치계산상으로는 마치 정확한 선형관리가 이루어지는 것으로 나타날 수 있는 상황들을 방지하기 위해 GEOCON에서 채택하고 있는 기술적인 특징들에 대하여 논하고 있다. 또한 실제 현장적용을 통하여 GEOCON의 효용성을 검증하였다. GEOCON을 통하여 선형관리된 부산항 배후도로 현장은 총 길이 2109m의 프리캐스트 세그멘탈 교량구간을 포함하고 있으며 고임판의 사용없이 허용 관리치 내에서 매우 정확한 선형관리가 이루어졌다.

Effect of Structural Geometry of Jointed Concrete Pavement on Backcalculation using AREA Method (줄눈콘크리트 포장의 구조적 형상이 AREA법을 이용한 역해석에 미치는 영향)

  • Yoo, Tae-Seok;Sim, Jong-Sung
    • International Journal of Highway Engineering
    • /
    • v.9 no.1 s.31
    • /
    • pp.39-46
    • /
    • 2007
  • Different backcalculation results for the same material properties are caused by different structural geometry. In this paper, based on real simulation results for typical pavement systems using 3-dimensional FE models, modified AREA graphs are proposed to graphically backcalculate modulus of elasticity of slab and subgrade based on center deflection and AREA. In modified graph for single infinity slab models, deflection and AREA are increased in deeper depth to bedrock. But, effects of depth to bedrock more than 4.0 meters on backcalculation results are negligible. And, center deflection and AREA generated from multifinite slab models are larger than those of single infinity slab models with same depth to bedrock.

  • PDF

Review on Analytical Solutions for Slump Flow of Cement Paste (시멘트 페이스트의 슬럼프 유동 모사를 위한 분석적 해의 검토)

  • Yun, Taeyoung
    • International Journal of Highway Engineering
    • /
    • v.18 no.3
    • /
    • pp.21-32
    • /
    • 2016
  • PURPOSES : In this paper, the analytical solutions suggested to simulate the behavior of rheological fluids were rigorously re-derived and investigated for fixed conditions to evaluate the applicability for the solutions on a mini-cone slump test of cement paste. The selected solutions with proper boundary conditions can be used as reference solutions to evaluate the performance of numerical simulation approaches, such as the discrete element method. METHODS : The slump, height, and spread radius for the given boundary and yield stress conditions that are determined by five different analytical solutions are compared. RESULTS : The analytical solution based on fluid mechanics for pure shear flow shows similar results to that for intermediate flow at low yield stresses. The fluid mechanics-based analytical solution resulted in a very similar trend to the geometry-based analytical solution. However, it showed a higher slump at high yield stress and lower slump at low yield stress ranges than the geometry-based analytical model. The analytical solution based on the mini-cone geometry was not significantly affected by the yield criteria, such as von Mises and Tresca. CONCLUSIONS : Even though differences among the analytical solutions in terms of slump and spread radius existed, the difference can be considered insignificant when the solutions were used as reference to evaluate the appropriateness of numerical approaches, such as the discrete element method.

Development of Digital Image Acquisition System for the Road Safety Survey and Analysis Vehicle (도로안전성 조사분석차량을 위한 영상취득시스템 개발)

  • Jeong, Dong-Hoon;Yoon, Chun-Joo;Sung, Jung-Gon
    • International Journal of Highway Engineering
    • /
    • v.7 no.4 s.26
    • /
    • pp.163-171
    • /
    • 2005
  • Current roads were designed and constructed based on the design criteria and thus those were overly simplified drivers' needs. The road criteria do not suggest the desirable range of the design values but suggest the minimum requirements for the road design. Therefore, a completed road design based on the design criteria does not always guarantee the best design in terms of safety and it sometimes violates drivers' expectation. Therefore, the ROSSAV(ROad Safety Survey and Analysis Vehicle) is being developed by the KICT to evaluate road safety and increase driving safety. In this paper, the image capture system was described in detail. The image capture system is consisted of two front view cameras, two side down-looking cameras and a synchronization device. Two front view cameras were used to take a picture of road and road facilities at the driver's viewpoint. Also, two side down-looking cameras were used to capture road surface image to extract lane markings. A synchronization device were used to generate image capturing signal at the fixed distance spacing huck as every 10m. The front view images could be used to calculate and measure highway geometry such as shoulder width because every image is saved with it's locational information. And also the side down looking images could be used to extract median lane mark which representing road alignement efficiently.

  • PDF

A Study on Cost-Benefit Analysis of Noise Control Facilities using Road Traffic Noise Map (도로교통 소음지도를 이용한 소음저감시설의 비용 / 효과 분석방법 연구)

  • Kim, Ji-Yoon;Park, Sang-Kyu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.303-310
    • /
    • 2008
  • In Korea, the current noise impact assessment has not yet considered the vertical noise propagation property by buildings and other obstacles. And noise control plan has been established without conducting the economic assessment for the noise control facilities. A noise map is used to calculate the noise level based on a theoretical formula or an empirical formula, and also predict the characteristics of vertical propagation by linking with a geometry data. And It is Possible to analyze cost-effect of noise control facilities by consider installation costs. In this study, we addressed the application of noise map for noise impact assessment and cost-effect analysis of noise control facilities.

  • PDF

Traffic Accident Models for Trucks at Roundabouts (회전교차로에서의 화물차 사고모형)

  • Son, Seul Ki;Kim, Tae Yang;Park, Byung Ho
    • International Journal of Highway Engineering
    • /
    • v.19 no.4
    • /
    • pp.53-59
    • /
    • 2017
  • PURPOSES : This study deals with traffic accidents involving trucks. The objective of this study is to develop a traffic accident model for trucks at roundabouts. METHODS : To achieve its objective, this study gives particular attention to develop appropriate models using Poisson and negative binomial regression models. Traffic accident data from 2007 to 2014 were collected from TAAS data set of road traffic authority. Thirteen explanatory variables such as geometry and traffic volume were used. RESULTS : The main results can be summarized as follows: (1) two statistically significant Poisson models (${\rho}^2=0.398$ and 0.435) were developed, and (2) the analysis revealed the common variables to be traffic volume, number of exit lanes, speed breakers, and truck apron width. CONCLUSIONS : Our modeling reveals that increasing the number of speed breakers and speed limit signs, and widening the truck apron width are important for reducing the number of truck accidents at roundabouts.