• Title/Summary/Keyword: Road body

Search Result 251, Processing Time 0.027 seconds

An Acoustic Analysis of Noise Environments during Mobile Device Usage

  • Park, Hyung Woo
    • International journal of advanced smart convergence
    • /
    • v.6 no.2
    • /
    • pp.16-23
    • /
    • 2017
  • In contemporary modern society, people are constantly exposed to many kinds of noise, such as that from machinery, aircraft, construction sites, or road traffic. Noise is considered one of the most indispensable and influential parts of human life. This study investigates the acoustic characteristics of noise transfer from external sources to the human ear. For this study, we measured and analyzed various types of noise environments, installed monitoring speakers in a semi-anechoic room, and conducted intentional noise-filled experiments. In this environment, the size of the sounds generated by use of a portable device was also measured and the SNR (signal to noise ratio) calculated to study the influence of the noise. As sound is transmitted to the ear and the human body, it affects not only auditory damage but also other parts of the body. In this paper, we propose a proper SNR for noise emitted by portable IT equipment to prevent hearing loss when IT equipment is used.

A Study on the Vibratory Characteristics of the Stack in Fuel Cell Vehicle at Driving Condition (연료전지 차량 주행시 스택의 진동 특성 연구)

  • Ju, Hyung-Jun;Kim, Gi-Hoon;Park, Jae-Yong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.5
    • /
    • pp.50-55
    • /
    • 2010
  • In recent years, the development of fuel cell vehicles has further accelerated because of environmental problem and petroleum resources shortage. The fuel cell vehicles have the stack which converts fuel to electricity. The stack is usually mounted by bush to isolate the vibration of chassis and body. This paper analyzed the vibratory characteristics of stack and chassis, body system. The wheel forces of fuel cell vehicle are measured to estimate the road load data. And the paths of vibration from wheel to stack are analyzed by CAE. According to the test and CAE results, the improvement of stack vibration are evaluated.

Development of the Active Steering Tilt Controller for Stability of the Narrow Commuter Vehicles (폭이 좁은 차량의 안정성 향상을 위한 능동형 스티어링 기울임 제어기의 개발)

  • 소상균
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.2
    • /
    • pp.107-117
    • /
    • 1998
  • As the traffic congestion and parking problems in urban areas are increased the tall and narrow commuter vehicles have interested as a means to increase the utilization of existing freewa- ys and parking facilities. However, in hard cornering those vehicles could reduce stability against overturning compared to conventional vehicles. This tendency can be mitigated by tilting the body toward the inside of the turn. In this paper those tilting vehicles are considered in which at speed at least, the tilt angle is controlled by steering the front wheels. In other word, if the driver turns the steering wheel the tilt controller automatically steers the road wheel to tilt the body inside of the turn. Also, the dynamic tilting vehicle model with tire slip angles is constructed by adding the roll degree of freedom. Finally, through computer simulation the behaviors of the tilting vehicles are investigated.

  • PDF

Design of Non-linear Observer to Estimate Yaw Rate and Sidel Slip Angle (Yaw Rate 및 Side Slip Angle 추정을 위한 비선형 관측기 설계)

  • Song, Jeong-Hoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.5
    • /
    • pp.48-53
    • /
    • 2012
  • A non-linear vehicle model and an observer are designed to observe the yaw rate and the body side slip angle when a vehicle is turning maneuver in this study. The developed vehicle model is a full car model and has fourteen degree of freedom. A Luenberg observer is applied to develop the observer. The vehicle model is validated with a reference result and shows good accordance. The observer is tested on dry asphalt, wet asphalt and snow paved road. The results prove the performance of observer is robust and reliable.

Calculation of Dynamic Stress-Time History for a Vehicle Using Flexible Body Dynamics Model (유연체 동력학 모델을 이용한 차량의 동응력-시간선도 계산)

  • Park, Chan-Jong;Yim, Hong-Jae;Park, Tae-Won
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.702-707
    • /
    • 2000
  • Under the rapid change of a new vehicle model, it is necessary to develop a durability analysis technique using computer simulation. In order to do this. reliable dynamic stress-time history for the vehicle components must be calculated on various road conditions. In this paper, a full vehicle simulation model which is composed of flexible frame and chassis components is proposed and verified its reliability from the comparison with field test data. Finally, dynamic stress-time history on the rear chassis components is predicted with hybrid and modal superposition method.

  • PDF

Design of dynamic Characteristic of Seat using Estimated Biomechanical Model (인체 진동 모델을 이용한 시트 동적 설계)

  • 조영건;윤용산;박세진
    • Journal of KSNVE
    • /
    • v.10 no.5
    • /
    • pp.811-818
    • /
    • 2000
  • This paper deals with the design of a car seat for enhancing dynamic ride quality using a Biomechanical Model that was developed from the measured whole-body vibration characteristic. For evaluation of seat ride quality, the z-axis acceleration of floor as an input of biomechanical model was measured on a driving passenger car at highway and national road. Form the floor signal and the estimated biomechanical model, overall ride value evaluated by parameter study of seat stiffness and damping. The result shows that overall ride value decreases as the seat damping increases and the sear stiffness decreases. A lot of polyurethane foams were manufactured and tried to evaluate dynamic ride quality of a seat. It is found that stiffness and damping of a seat show a linear relationship, which means the stiffness and damping are not independent each other, So the optimal seat parameters within practically achievable space are determined.

  • PDF

A Study on Lateral Stability Enhancement of 4WS Vehicle with Active Front Wheel Steer System (능동전륜조향장치를 채택한 사륜조향차량의 횡방향 안정성 강화에 대한 연구)

  • Song, Jeong-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.2
    • /
    • pp.15-20
    • /
    • 2012
  • This study is to propose and develop an integrated dynamics control system to improve and enhance the lateral stability and handling performance. To achieve this target, we integrate an AFS and a 4WS systems with a fuzzy logic controller. The IDCS determines active additional steering angle of front wheel and controls the steering angle of rear wheel. The results show that the IDCS improves the lateral stability and controllability on dry asphalt and snow paved road when double lane change and step steering inputs are applied. Yaw rate of the IDCS vehicle tracks reference yaw rate very well and body slip angle is reduced about by 50%. Response time of the IDCS vehicle is also decreased.

Resistance to Abrasive Wear of Materials Used as Metallic Matrices in Diamond Impregnated Tools

  • Konstanty, Janusz;Kim, Tai-Woung;Kim, Sang-Beom
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1132-1133
    • /
    • 2006
  • Metal-bonded diamond impregnated tools are being increasingly used in the processing of stone and ceramics, road repair, petroleum exploration, etc. Although the main tool wear mechanisms have been identified, the scientific background is inadequate and fundamental research has to be carried out to better understand the tool field behaviour. This work addresses the complex issues of modelling abrasive wear of the metallic matrix under laboratory conditions. The generated data indicates that the matrix wear resistance can be assessed in a simple manner; whereas tests carried out on diamond impregnated specimens may aid prediction of the tool life in abrasive applications.

  • PDF

Durability Analysis Technique of Automotive Suspension System Considering Dynamic Characteristics (동적 특성을 고려한 차량 현가 시스템의 내구해석 기법)

  • 한우섭;이혁재;임홍재;이상범
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.336-341
    • /
    • 2003
  • In this paper, resonance durability analysis technique is presented for the fatigue life assessment considering dynamic effect of a vehicle system. In the resonance durability analysis, the frequency response and the dynamic load on frequency domain are used. Multi-body dynamic analysis, finite element analysis, and fatigue life prediction method are applied for the virtual durability assessment. To obtain the frequency response and the dynamic load, the computer simulations running over typical pothole and Belgian road are carried out by utilizing vehicle dynamic model. The durability estimations on the rear suspension system of the passenger car are performed by using the presented technique and compared with the quasi-static durability analysis. The study shows that the fatigue life considering resonant frequency of vehicle system can be effectively estimated in early design stage.

  • PDF

Parameter Sensitivity Analysis for Full Vehicle Model (전차량모델에 대한 설계변수 민감도 해석)

  • Nam, Kyung-Mo;Ha, Tae-Wan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.827-831
    • /
    • 2012
  • Passengers and mounted equipments on a vehicle are exposed to the vibration when it is driven on the road. To minimize the vibration and improve the dynamic characteristics of a vehicle are important factors. Those are changed by modifying parameters of the vehicle. To save development cost and time, simulation methods using vibration model have been widely used before making the real vehicle. In this paper two aimed functions, displacement between wheels and the body and acceleration of the body, have been defined for the parameter sensitivity analysis of the large vehicle. Full Vehicle Model having 11 degrees of freedom applied to solve those issues.