• Title/Summary/Keyword: Road black ice

Search Result 21, Processing Time 0.023 seconds

Estimation of Road Sections Vulnerable to Black Ice Using Road Surface Temperatures Obtained by a Mobile Road Weather Observation Vehicle (도로기상차량으로 관측한 노면온도자료를 이용한 도로살얼음 취약 구간 산정)

  • Park, Moon-Soo;Kang, Minsoo;Kim, Sang-Heon;Jung, Hyun-Chae;Jang, Seong-Been;You, Dong-Gill;Ryu, Seong-Hyen
    • Atmosphere
    • /
    • v.31 no.5
    • /
    • pp.525-537
    • /
    • 2021
  • Black ices on road surfaces in winter tend to cause severe and terrible accidents. It is very difficult to detect black ice events in advance due to their localities as well as sensitivities to surface and upper meteorological variables. This study develops a methodology to detect the road sections vulnerable to black ice with the use of road surface temperature data obtained from a mobile road weather observation vehicle. The 7 experiments were conducted on the route from Nam-Wonju IC to Nam-Andong IC (132.5 km) on the Jungang Expressway during the period from December 2020 to February 2021. Firstly, temporal road surface temperature data were converted to the spatial data with a 50 m resolution. Then, the spatial road surface temperature was normalized with zero mean and one standard deviation using a simple normalization, a linear de-trend and normalization, and a low-pass filter and normalization. The resulting road thermal map was calculated in terms of road surface temperature differences. A road ice index was suggested using the normalized road temperatures and their horizontal differences. Road sections vulnerable to black ice were derived from road ice indices and verified with respect to road geometry and sky view, etc. It was found that black ice could occur not only over bridges, but also roads with a low sky view factor. These results are expected to be applicable to the alarm service for black ice to drivers.

Black Ice Detection Platform and Its Evaluation using Jetson Nano Devices based on Convolutional Neural Network (CNN)

  • Sun-Kyoung KANG;Yeonwoo LEE
    • Korean Journal of Artificial Intelligence
    • /
    • v.11 no.4
    • /
    • pp.1-8
    • /
    • 2023
  • In this paper, we propose a black ice detection platform framework using Convolutional Neural Networks (CNNs). To overcome black ice problem, we introduce a real-time based early warning platform using CNN-based architecture, and furthermore, in order to enhance the accuracy of black ice detection, we apply a multi-scale dilation convolution feature fusion (MsDC-FF) technique. Then, we establish a specialized experimental platform by using a comprehensive dataset of thermal road black ice images for a training and evaluation purpose. Experimental results of a real-time black ice detection platform show the better performance of our proposed network model compared to conventional image segmentation models. Our proposed platform have achieved real-time segmentation of road black ice areas by deploying a road black ice area segmentation network on the edge device Jetson Nano devices. This approach in parallel using multi-scale dilated convolutions with different dilation rates had faster segmentation speeds due to its smaller model parameters. The proposed MsCD-FF Net(2) model had the fastest segmentation speed at 5.53 frame per second (FPS). Thereby encouraging safe driving for motorists and providing decision support for road surface management in the road traffic monitoring department.

Multi-Scale Dilation Convolution Feature Fusion (MsDC-FF) Technique for CNN-Based Black Ice Detection

  • Sun-Kyoung KANG
    • Korean Journal of Artificial Intelligence
    • /
    • v.11 no.3
    • /
    • pp.17-22
    • /
    • 2023
  • In this paper, we propose a black ice detection system using Convolutional Neural Networks (CNNs). Black ice poses a serious threat to road safety, particularly during winter conditions. To overcome this problem, we introduce a CNN-based architecture for real-time black ice detection with an encoder-decoder network, specifically designed for real-time black ice detection using thermal images. To train the network, we establish a specialized experimental platform to capture thermal images of various black ice formations on diverse road surfaces, including cement and asphalt. This enables us to curate a comprehensive dataset of thermal road black ice images for a training and evaluation purpose. Additionally, in order to enhance the accuracy of black ice detection, we propose a multi-scale dilation convolution feature fusion (MsDC-FF) technique. This proposed technique dynamically adjusts the dilation ratios based on the input image's resolution, improving the network's ability to capture fine-grained details. Experimental results demonstrate the superior performance of our proposed network model compared to conventional image segmentation models. Our model achieved an mIoU of 95.93%, while LinkNet achieved an mIoU of 95.39%. Therefore, it is concluded that the proposed model in this paper could offer a promising solution for real-time black ice detection, thereby enhancing road safety during winter conditions.

Real-time Road Surface Recognition and Black Ice Prevention System for Asphalt Concrete Pavements using Image Analysis (실시간 영상이미지 분석을 통한 아스팔트 콘크리트 포장의 노면 상태 인식 및 블랙아이스 예방시스템)

  • Hoe-Pyeong Jeong;Homin Song;Young-Cheol Choi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.1
    • /
    • pp.82-89
    • /
    • 2024
  • Black ice is very difficult to recognize and reduces the friction of the road surface, causing automobile accidents. Since black ice is difficult to detect, there is a need for a system that identifies black ice in real time and warns the driver. Various studies have been conducted to prevent black ice on road surfaces, but there is a lack of research on systems that identify black ice in real time and warn drivers. In this paper, an real-time image-based analysis system was developed to identify the condition of asphalt road surface, which is widely used in Korea. For this purpose, a dataset was built for each asphalt road surface image, and then the road surface condition was identified as dry, wet, black ice, and snow using deep learning. In addition, temperature and humidity data measured on the actual road surface were used to finalize the road surface condition. When the road surface was determined to be black ice, the salt spray equipment installed on the road was automatically activated. The surface condition recognition system for the asphalt concrete pavement and black ice automatic prevention system developed in this study are expected to ensure safe driving and reduce the incidence of traffic accidents.

Road Environment Black Ice Detection Limits Using a Single LIDAR Sensor (단일 라이다 센서를 이용한 도로환경 블랙아이스 검출 한계)

  • Sung-Tae Kim;Won-Hyuck Choi;Je-Hong Park;Seok-Min Hong;Yeong-Geun Lim
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.6
    • /
    • pp.865-870
    • /
    • 2023
  • Recently, accidents caused by black ice, a road freezing phenomenon caused by natural power, are increasing. Black ice is difficult to identify directly with the human eye and is more likely to misunderstand it as standing water, so there is a high accident rate caused by car sliding. To solve this problem, this paper presents a method of detecting black ice centered on LiDAR sensors. With a small, inexpensive, and high-accuracy light detection and ranging (LiDAR) sensor, the temperature and inclination angle are set differently to detect black ice and asphalt by setting different reflection angles of asphalt and black ice differently in temperatures and inclinations. The LIDARO carried out in the study points out that additional research and improvement are needed to increase accuracy, and through this, more reliable black ice detection methods can be suggested. This method suggests a method of detecting black ice through early system design research by preventing accidents caused by black ice in advance.

A Black Ice Recognition in Infrared Road Images Using Improved Lightweight Model Based on MobileNetV2 (MobileNetV2 기반의 개선된 Lightweight 모델을 이용한 열화도로 영상에서의 블랙 아이스 인식)

  • Li, Yu-Jie;Kang, Sun-Kyoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.12
    • /
    • pp.1835-1845
    • /
    • 2021
  • To accurately identify black ice and warn the drivers of information in advance so they can control speed and take preventive measures. In this paper, we propose a lightweight black ice detection network based on infrared road images. A black ice recognition network model based on CNN transfer learning has been developed. Additionally, to further improve the accuracy of black ice recognition, an enhanced lightweight network based on MobileNetV2 has been developed. To reduce the amount of calculation, linear bottlenecks and inverse residuals was used, and four bottleneck groups were used. At the same time, to improve the recognition rate of the model, each bottleneck group was connected to a 3×3 convolutional layer to enhance regional feature extraction and increase the number of feature maps. Finally, a black ice recognition experiment was performed on the constructed infrared road black ice dataset. The network model proposed in this paper had an accurate recognition rate of 99.07% for black ice.

Proposal of a Black Ice Detection Method Using Infrared Camera and YOLO for Reducing of Traffic Accidents (교통사고 경감을 위한 적외선 카메라와 YOLO를 사용한 블랙아이스 탐지 방법 제안)

  • Kim, Hyunggyun;Jang, Minseok;Lee, Yonsik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.416-421
    • /
    • 2021
  • In case of the road slips due to heavy snow and the temperature drops below 0 degrees, black ice which mainly occurs on the road, bridges for vehicles, and tunnel entrances, is not recognized by the driver's view because the image of the asphalt is transmitted through it. So cars' slip situation occurs, which leads to a big traffic accident and a large amount of loss of life and property. This study proposes a method to check the road condition using an infrared camera and to identify black ice through deep learning.

  • PDF

Characteristics of Black Ice Using Thermal Imaging Camera (열화상카메라를 이용한 블랙아이스 특성 연구)

  • Kim, Seung-Jun;Yoon, Won-Sub;Kim, Yeon-Kyu
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.6_2
    • /
    • pp.873-882
    • /
    • 2021
  • In this study, a study was conducted to develop a system for predicting/responding to black ice occurring on roads in winter. Tests conditions were studied by making models of cement concrete pavement and asphalt concrete pavement. In order to freeze water on the manufactured model package, an tests was conducted at a temperature below zero using a freezer, and the freezing process was photographed using a thermal imaging camera. Black ice is generated when water is present on the road surface and the temperature is below freezing or the road surface temperature is below the dew point temperature. Under sub-zero conditions, the pavement, water, and ice were classified with a thermal imaging camera. As a result of the tests, it was possible to distinguish with a thermal imaging camera at a temperature below freezing in the same freezer due to the difference in the emissivity of the packaging, water, and ice. In the process of changing from water to ice during the tests, it was analyzed that ice and water were clearly distinguished by the thermal imaging camera due to the difference in emissivity and reflectance, so black ice could be predicted using the thermal imaging camera.

A Black Ice Detection Method Using Infrared Camera and YOLO (적외선 카메라와 YOLO를 사용한 블랙아이스 탐지 방법)

  • Kim, Hyung Gyun;Jang, Min Seok;Lee, Yon Sik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.12
    • /
    • pp.1874-1881
    • /
    • 2021
  • Black ice, which occurs mainly on the road, vehicle traffic bridges and tunnel entrances due to the sub-zero temperature due to the slip of the road due to heavy snow, is not recognized because the image of asphalt is transmitted in the driver's view, so the vehicle loses braking power because it causes serious loss of life and property. In this paper, we propose a method to identify the black ice by using infrared camera and to identify the road condition by using deep learning to compensate for the disadvantages of existing black ice detection methods (artificial satellite imaging, checking the pattern of slip by ultrasonic reception, measuring the temperature of the road surface, and checking the difference in friction force of the tire during vehicle driving) and to reduce the size of the sensor to detect black ice.

Preliminary Study on Black-Ice Detection Using GPS Ground Reflection Signals

  • Young-Joo Kwon;Hyun-Ju Ban;Sumin Ryu;Suna Jo;Han-Sol Ryu;Yerin Kim;Yun-Jeong Choi;Sungwook Hong
    • Journal of the Korean earth science society
    • /
    • v.45 no.4
    • /
    • pp.318-326
    • /
    • 2024
  • Black ice, a thin and nearly invisible ice layer on roads and pavements, poses a significant danger to drivers and pedestrians during winter due to its transparency. We propose an efficient black ice detection system and technique utilizing Global Positioning System (GPS)-reflected signals. This system consists of a GPS antenna and receiver configured to measure the power of GPS L1 band signal strength. The GPS receiver system was designed to measure the signal power of the Right-Handed Circular Polarization (RHCP) and Left-Handed Circular Polarization (LHCP) from direct and reflected signals using two GPS antennas. Field experiments for GPS LHCP and RHCP reflection measurements were conducted at two distinct sites. We present a Normalized Polarized Reflection Index (NPRI) as a methodological approach for determining the presence of black ice on road surfaces. The field experiments at both sites successfully detected black ice on asphalt roads, indicated by NPRI values greater than -0.1 for elevation angles between 45° and 55°. Our findings demonstrate the potential of the proposed GPS-based system as a cost-effective and scalable solution for large-scale black ice detection, significantly enhancing road safety in cold climates. The scientific significance of this study lies in its novel application of GPS reflection signals for environmental monitoring, offering a new approach that can be integrated into existing GPS infrastructure to detect widespread black ice in real-time.