• Title/Summary/Keyword: Road Surface Monitoring

Search Result 45, Processing Time 0.027 seconds

The Analysis of Coastal Erosion and Erosion Impact Assessment in the East Coast (동해안 침식 원인분석 및 침식 영향도 평가)

  • Park, Seon Jung;Seo, Heui Jung;Park, Seung Min;Park, Seol Hwa;Ahn, Ike Jang;Seo, Gyeong Sik
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.6
    • /
    • pp.246-256
    • /
    • 2021
  • Various development projects occurring on the coast cause an imbalance of surface sediments, causing coastal disasters or irreversible coastal erosion. Coastal erosion caused by the influence of various port structures built through coastal development can be directly identified by evaluating changes in the sediment budget, longshore sediment, and cross-shore sediment. In other words, it will be possible to evaluate the causality between coastal development and coastal erosion by classifying regions due to single cause and regions due to multiple causes according to the changes in the sediment classified into the three types mentioned above. In this study, the cause of long-term and continuous erosion was analyzed based on the analysis results of the coastal development history and the Coastal Erosion Monitoring targeting the coast of Gangwon-do and Gyeongsangbuk-do on the east coast. In addition, in order to evaluate the degree of erosion caused by the construction of artificial coastal structures, the concept of erosion impact assessment was established, three methods were proposed for the impact assessment. The erosion impact of Hajeo port was assessed using the results of satellite image analysis presented in the Coastal Erosion Monitoring Report, it was assessed that the development of Hajeo port had an impact of 93.4% on erosion, and that of the coastal road construction had an impact of 6.6%.

The Effect of Shading on Pedestrians' Thermal Comfort in the E-W Street (동-서 가로에서 차양이 보행자의 열적 쾌적성에 미치는 영향)

  • Ryu, Nam-Hyong;Lee, Chun-Seok
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.46 no.6
    • /
    • pp.60-74
    • /
    • 2018
  • This study was to investigate the pedestrian's thermal environments in the North Sidewalk of E-W Street during summer heatwave. We carried out detailed measurements with four human-biometeorological stations on Dongjin Street, Jinju, Korea ($N35^{\circ}10.73{\sim}10.75^{\prime}$, $E128^{\circ}55.90{\sim}58.00^{\prime}$, elevation: 50m). Two of the stations stood under one row street tree and hedge(One-Tree), two row street tree and hedge (Two-Tree), one of the stations stood under shelter and awning(Shelter), while the other in the sun (Sunlit). The measurement spots were instrumented with microclimate monitoring stations to continuously measure microclimate, radiation from the six cardinal directions at the height of 1.1m so as to calculate the Universal Thermal Climate Index (UTCI) from 24th July to 21th August 2018. The radiant temperature of sidewalk's elements were measured by the reflective sphere and thermal camera at 29th July 2018. The analysis results of 9 day's 1 minute term human-biometeorological data absorbed by a man in standing position from 10am to 4pm, and 1 day's radiant temperature of sidewalk elements from 1:16pm to 1:35pm, showed the following. The shading of street tree and shelter were mitigated heat stress by the lowered UTCI at mid and late summer's daytime, One-Tree and Two-Tree lowered respectively 0.4~0.5 level, 0.5~0.8 level of the heat stress, Shelter lowered respectively 0.3~1.0 level of the heat stress compared with those in the Sunlit. But the thermal environments in the One-Tree, Two-Tree and Shelter during the heat wave supposed to user "very strong heat stress" while those in the Sunlit supposed to user "very strong heat stres" and "exterme heat stress". The main heat load temperature compared with body temperature ($37^{\circ}C$) were respectively $7.4^{\circ}C{\sim}21.4^{\circ}C$ (pavement), $14.7^{\circ}C{\sim}15.8^{\circ}C$ (road), $12.7^{\circ}C$ (shelter canopy), $7.0^{\circ}C$ (street funiture), $3.5^{\circ}C{\sim}6.4^{\circ}C$ (building facade). The main heat load percentage were respectively 34.9%~81.0% (pavement), 9.6%~25.2% (road), 24.8% (shelter canopy), 14.1%~15.4% (building facade), 5.7% (street facility). Reducing the radiant temperature of the pavement, road, building surfaces by shading is the most effective means to achieve outdoor thermal comfort for pedestrians in sidewalk. Therefore, increasing the projected canopy area and LAI of street tree through the minimal training and pruning, building dense roadside hedge are essential for pedestrians thermal comfort. In addition, thermal liner, high reflective materials, greening etc. should be introduced for reducing the surface temperature of shelter and awning canopy. Also, retro-reflective materials of building facade should be introduced for the control of reflective sun radiation. More aggressively pavement watering should be introduced for reducing the surface temperature of sidewalk's pavement.

Study on the Vegetation Change of the Road-side Slopes Restored by Native Herbs and Woody Plants - Centered with Monitoring Survey - (재래 초·목본 식물 위주의 비탈면녹화 시공지에 대한 식생 변화에 관한 연구 -모니터링 조사를 중심으로-)

  • Nam, Un-Jung;Kim, Nam-Choon;Cho, Min-Hwan;Gil, In;Lee, Suk-Hae;Lee, Jeong-Hak
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.10 no.4
    • /
    • pp.70-82
    • /
    • 2007
  • Aiming at nature's early restoring needs to select plant species harmonizing with surrounding environment that fits to restoring goal of ultimately aiming at woody plants dominant vegetation that protect and stabilize surface parts of bared slopes. And it is important to make it assimilated with surrounding natural vegetation by differentiating planning of seed mixtures. Natural Ecological Restoring Construction Methods (JSB Method) was developed to increase the effect of landscape change according to seasons not to simple hydro-seeding by reducing rate of foreign grasses while raising rate of wild flower using. It was considered that using wild flowers that bloom on each season solved the problems of slope landscapes that looks artificial and uninteresting. After researching environmental condition of the slopes, JSB Method has shown that, as of wet-type method, soil is relatively soft and the difference of thickness of plant base soil media affects on the difference of soil hardness. In case of soil hardness of 8.8~17mm, there's dangerousness of slope's collapsing, but it has shown that growth of plant was favorable. For the acidity of soil, most of them are in the type of neutralized soil of more than pH 6. And after analyzing the degree of woody plants dominance, it had shown that lower part was occupied with wild flowers and other herbaceous species like China pin, golden phesant mum, pitcher plant, and middle and upper part was occupied with woody plants like silk-tree, sumac forming multi-layer structure. It can be concluded that the restoration objects of the woody plant vegetation on the roadside slopes can be accomplished successfully by Natural Ecological Restoring Construction Method (JSB method).

Characteristics of Pollutant Washed-off from Highways with Storm Runoff Duration (아스팔트 포장 고속도로의 강우 지속시간별 오염물질 유출 경향)

  • Kim Lee-Hyun;Lee Eun-Ju;Ko Seok-Oh;Kang Hee-Man
    • International Journal of Highway Engineering
    • /
    • v.8 no.1 s.27
    • /
    • pp.99-106
    • /
    • 2006
  • During the dry periods, many types of pollutant are accumulating on the paved surface by vehicle activities. Particularly, the highways are stormwater intensive landuses because of high imperviousness and high pollutant mass emissions from vehicles. The accumulated pollutants in highways are washed-off during a rainfall event and are highly contributing on water quality of receiving water bodies. The stormwater runoff from the highways are containing various pollutants such as metals, oil & grease and toxic chemicals originated from vehicles. Therefore, this research is performed to find pollutant characteristics in the magnitude of statistical pollutant concentrations during storm periods. During the monitoring periods, the first-flush phenomenon is visibly occurred on most storm events, which is confirmed from hydro- and pollute-graphs. The 95% confidence intervals of washed-off pollutant concentration are ranged to 154.7-257.1 mg/L for 755,138.9-197.6 mg/L for COD, 3.5-6.4 mg/L for oil & grease, 6.3-9.2 mg/L for TN and 2.3-3.31 mg/L for TP. The first flush effect is mostly occurred within initial 30 min of storm duration.

  • PDF

Analysis of First Flushing Effects and EMCs of Non-point Pollutants from Impervious Area during Rainfall (강우시 불투수성 지역의 비점오염물질 EMCs 산정 및 초기세척효과 분석)

  • Ahn, Tae-Woong;Kim, Tae-Hoon;Oh, Jong-Min
    • Korean Journal of Ecology and Environment
    • /
    • v.45 no.4
    • /
    • pp.459-473
    • /
    • 2012
  • This study evaluated the rainfall-runoff characteristics of Non-point Pollution Source (NPS) of the impervious area through on-site monitoring. In this study, trend analysis was performed by various runoff analysis method of non-point pollution source. The characteristics of rainfall at impervious area appeared to be influenced by rainfall strength. It is judged that the measure is required to be prepared against that now that concentration difference of non-point pollution source appeared to be big by precedent number of days of no rainfall. However, it appeared that Rainfall Sustaining Time (RST) has nothing to do with effluent concentration of non-point pollution source, however, the rising tendency that effluent concentration did not appear because the tendency that concentration of non-point pollution source reduces more than 50% within initial 60 min due to first flushing effects and rainfall sustaining time is long. If looking into the outflow tendency of non-point pollution source at the impervious area, it showed the tendency that the concentration lowers gradually as time goes by after initial concentration appeared very high. However, it could be recognized that the concentration of non-point pollution source appeared to be high as the pollutants integrated on the surface of the road during dry season. The Event Mean Concentrations (EMCs) in impervious area were ranged $9.2{\sim}199.3mg{\cdot}L^{-1}$ for TSS, $8.1{\sim}24.2mg{\cdot}L^{-1}$ for $COD_{Mn}$, $0.070{\sim}1.860mg{\cdot}L^{-1}$ for T-N. Based on such runoff characteristics of non-point pollution source, it is judged that it would be desirable to process initial rain efficiently as the measure against initial rain phenomenon at the impervious area.