• Title/Summary/Keyword: Road Speed Prediction

Search Result 75, Processing Time 0.028 seconds

A Short-Term Traffic Information Prediction Model Using Bayesian Network (베이지안 네트워크를 이용한 단기 교통정보 예측모델)

  • Yu, Young-Jung;Cho, Mi-Gyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.4
    • /
    • pp.765-773
    • /
    • 2009
  • Currently Telematics traffic information services have been various because we can collect real-time traffic information through Intelligent Transport System. In this paper, we proposed and implemented a short-term traffic information prediction model for giving to guarantee the traffic information with high quality in the near future. A Short-term prediction model is for forecasting traffic flows of each segment in the near future. Our prediction model gives an average speed on the each segment from 5 minutes later to 60 minutes later. We designed a Bayesian network for each segment with some casual nodes which makes an impact to the road situation in the future and found out its joint probability density function on the supposition of GMM(Gaussian Mixture Model) using EM(Expectation Maximization) algorithm with training real-time traffic data. To validate the precision of our prediction model we had conducted various experiments with real-time traffic data and computed RMSE(Root Mean Square Error) between a real speed and its prediction speed. As the result, our model gave 4.5, 4.8, 5.2 as an average value of RMSE about 10, 30, 60 minutes later, respectively.

Prediction Models for the Severity of Traffic Accidents on Expressway On- and Off-Ramps (유입·유출특성을 고려한 고속도로 연결로의 교통사고 심각도 예측모형)

  • Yun, Il-Soo;Park, Sung-Ho;Yoon, Jung-Eun;Choi, Jin-Hyung;Han, Eum
    • International Journal of Highway Engineering
    • /
    • v.14 no.5
    • /
    • pp.101-111
    • /
    • 2012
  • PURPOSES: Because expressway ramps are very complex segments where diverse roadway design elements dynamically change within relatively short length, drivers on ramps are required to drive their cars carefully for safety. Especially, ramps on expressways are designed to guarantee driving at high speed so that the risk and severity of traffic accidents on expressway ramps may be higher and more deadly than other facilities on expressways. Safe deceleration maneuvers are required on off-ramps, whereas safe acceleration maneuvers are necessary on onramps. This difference in required maneuvers may contribute to dissimilar patterns and severity of traffic accidents by ramp types. Therefore, this study was aimed at developing prediction models of the severity of traffic accidents on expressway on- and off-ramps separately in order to consider dissimilar patterns and severity of traffic accidents according to types of ramps. METHODS: Four-year-long traffic accident data between 2007 and 2010 were utilized to distinguish contributing design elements in conjunction with AADT and ramp length. The prediction models were built using the negative binomial regression model consisting of the severity of traffic accident as a dependent variable and contributing design elements as in independent variables. RESULTS: The developed regression models were evaluated using the traffic accident data of the ramps which was not used in building the models by comparing actual and estimated severity of traffic accidents. Conclusively, the average prediction error rates of on-ramps and offramps were 30.5% and 30.8% respectively. CONCLUSIONS: The prediction models for the severity of traffic accidents on expressway on- and off-ramps will be useful in enhancing the safety on expressway ramps as well as developing design guidelines for expressway ramps.

Improvement Plan of Excavation Performance Based on Shield TBM Performance Prediction Models and Field Data (쉴드 TBM 성능예측모델과 굴진자료 분석을 통한 굴진성능 개선방안)

  • Jung, Hyuksang;Kang, Hyoungnam;Choi, Jungmyung;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.2
    • /
    • pp.43-52
    • /
    • 2010
  • Shield method is the tunnel boring method that propels a steel cylinder in the ground and excavates tunnels at once. After Marc Isambard Brunel started using the method for the Thames Riverbed Tunnel excavation in London, many kinds of TBM (Tunnel Boring Machine) developed and applied for the construction of road, railway, electricity channel, pipeline, etc. In comparison with NATM concept that allows to observe ground condition and copes with difficulty. The machine selected before starting construction is not able to be changed during construction in shield TBM. Therefore the machine should be designed based on the ground survey result and experiment, so that the tunnel might be excavated effectively by controlling penetration speed, excavation depth and cutter head speed according to the ground condition change. This research was conducted to estimate penetration depth, excavate speed, wear of disc cutter on Boondang Railway of the Han Riverbed Tunnel ground condition by TBM performance prediction models such as NTNU, $Q_{TBM}$, Total Hardness, KICT-SNU and compare the estimated value with the field data. The estimation method is also used to analyze the reason of poor excavation efficiency at south bound tunnel.

Analysis of the Mechanism of Automated Speed Enforcement Systems on Traffic Safety (자동과속단속시스템의 교통안전개선 메커니즘 분석)

  • 강정규;현철승;오세리
    • Journal of Korean Society of Transportation
    • /
    • v.17 no.1
    • /
    • pp.187-196
    • /
    • 1999
  • The increasing interest in the use of Automated Speed Enforcement (ASE) systems in Korea enables to enforce speed violation by National Police Agency. We have analyzed the mechanism of ASE systems on traffic safety throughout Korea. 1 The data collected on a 2km road-section of each 32 ASE stations during one rear period indicate significant safety improvement. The results were (a) a decrease in the total number of accidents of 28%, (b) a decrease in the number of fatalities of 60%. 2. The study also that ASE systems are effective to reduce average speed, speed variance, and short headway. 3. Based on the operational data collected at 15 locations, an aggregate safety prediction model is proposed as a multiple regressions form. The primary operational variables that appear to affect the frequencies of accident are : average speed, speed variance, and the number of vehicles exceeding 30km/h of posted speed limit.

  • PDF

Freeway Crash Frequency Model Development Based on the Road Section Segmentation by Using Vehicle Speeds (차량 속도를 이용한 도로 구간분할에 따른 고속도로 사고빈도 모형 개발 연구)

  • Hwang, Gyeong-Seong;Choe, Jae-Seong;Kim, Sang-Yeop;Heo, Tae-Yeong;Jo, Won-Beom;Kim, Yong-Seok
    • Journal of Korean Society of Transportation
    • /
    • v.28 no.2
    • /
    • pp.151-159
    • /
    • 2010
  • This paper presents a research result that was performed to develop a more accurate freeway crash prediction model than existing models. While the existing crash models only focus on developing crash relationships associated with highway geometric conditions found on a short section of a crash site, this research applies a different approach considering the upstream highway geometric conditions as well. Theoretically, crashes occur while motorists are in motion, and particularly at freeways vehicle speed at one specific point is very sensitive to upstream geometric conditions. Therefore, this is a reasonable approach. To form the analysis data base, this research gathers the geometric conditions of the West Seaside Freeway 269.3 km and six years crash data ranging 2003-2008 for these freeway sections. As a result, it is found that crashes fit well into Negative Binomial Distribution, and, based on the developed model, total number of crashes is inversely proportional to highway curve length and radius. Contrarily, crash occurrences are proportional to tangent length. This result is different from existing crash study results, and it seems to be resulted from this research assumption that a crash is influenced greatly by upstream geometric conditions. Also, this research provides the expected effects on crash occurrences of the length of downgrade sections, speed camera placements, and the on- and off- ramp presences. It is expected that this research result is useful for doing more reasonable highway designs and safety audit analysis, and applying the same research approach to national roads and other major roads in urban areas is recommended.

ADPSS Channel Interpolation and Prediction Scheme in V2I Communication System (V2I 통신 시스템에서 ADPSS 채널 보간과 예측 기법)

  • Chu, Myeonghun;Moon, Sangmi;Kwon, Soonho;Lee, Jihye;Bae, Sara;Kim, Hanjong;Kim, Cheolsung;Kim, Daejin;Hwang, Intae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.8
    • /
    • pp.34-41
    • /
    • 2017
  • Vehicle to Infrastructure(V2I) communication means the technology between the vehicle and the roadside unit to provide the Intelligent Transportation Systems(ITS) and Telematic services. The vehicle collects information about the probe data through the evolved Node B(eNodeB) and after that eNodeB provides road conditions or traffic information to the vehicle. To provide these V2I communication services, we need a link adaptation technology that enables reliable and higher transmission rate. The receiver transmits the estimated Channel State Information(CSI) to transmitter, which uses this information to enable the link adaptation. However, due to the rapid channel variation caused by vehicle speed and the processing delay between the layers, the estimated CSI quickly becomes outdated. For this reason, channel interpolation and prediction scheme are needed to achieve link adaptation in V2I communication system. We propose the Advanced Discrete Prolate Spheroidal Sequence(ADPSS) channel interpolation and prediction scheme. The proposed scheme creates an orthonomal basis, and uses a correlation matrix to interpolate and predict channel. Also, smoothing is applied to frequency domain for noise removal. Simulation results show that the proposed scheme outperforms conventional schemes with the high speed and low speed vehicle in the freeway and urban environment.

The Prediction of Rubber Friction considering Road Characteristics (노면 특성을 고려한 고무 마찰 예측 연구)

  • Nam, Seungkuk;Oh, Yumrak;Jeon, Seonghee
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.4
    • /
    • pp.105-110
    • /
    • 2014
  • This paper presents the hysteresis friction of a sliding elastomer on various types of surfaces. The hysteresis friction is calculated by means of an analytical model which considers the energy spent by the local deformation of the rubber due to surface asperities. By establishing the fractal character of the surfaces, the contribution to rubber friction of roughness at different length scales is accounted for. High resolution surface profilometer is used in order to calculate the main three surface descriptors and the minimal length scale that can contribute to hysteresis friction. The results show that this friction prediction can be used in order to characterize in an elegant manner the surface morphology of various surfaces and to quantify the friction coefficient of sliding rubber as a function of surface roughness, load and speed.

Predictive Study of Rubber Friction Considering Large Deformation Contact (대변형 접촉을 고려한 고무 마찰 예측 연구)

  • Nam, Seungkuk
    • Tribology and Lubricants
    • /
    • v.34 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • This paper presents the analysis of friction master curves for a sliding elastomer on rough granite. The hysteresis friction is calculated using an analytical model that considers the energy spent during the local deformation of the rubber due to surface asperities. The adhesion friction is also considered for dry friction prediction. The viscoelastic modulus of the rubber compound and the large-strain effective modulus are obtained from dynamic mechanical analysis (DMA). We accurately demonstrate the large strain of rubber that contacts with road substrate using the GW theory. We found that the rubber block deforms approximately to 40% strain. In addition, the viscoelastic master curve considering nonlinearity (at 40% strain) is derived based on the above finding. As viscoelasticity strongly depends on temperature, it can be assumed that the influence of velocity on friction is connected to the viscoelastic shift factors gained from DMA using the time-temperature superposition. In this study, we apply these shift factors to measure friction on dry granite over a velocity range for various temperatures. The measurements are compared to simulated hysteresis and adhesion friction using the Kluppel friction theory. Although friction results in the low-speed band match well with the simulation results, there are differences in the predicted and experimental results as the velocity increases. Thus, additional research is required for a more precise explanation of the viscoelastic material properties for better prediction of rubber friction characteristics.

A Propagation Prediction Model for Planning a Cell in the PCS System (PCS 시스템 셀설계를 위한 전파예측 모델)

  • 김송민
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.35T no.3
    • /
    • pp.103-112
    • /
    • 1998
  • This paper proposes a propagation prediction model which can calculate a propagation path loss easily at option point in case of the propagation processing by repeat reflection when we analysis a propagation route, it makes the calculation speed which is the defect of a geometrical of image method and a ray-launching method improve and we develop and apply the algorithms which can do an angle of incidence, an angle of reflection with a propagation direct path, a reflection path and a maximum reflection number arithmetic process synchronously. Finally we choose as a sample which is the real road condition where is around SK telecoms chunnam branch office in wolgok-dong, kwangsan-ku, kwangju and simulate proposition model then we demonstrate the relative superiority with comparing the results.

  • PDF

The Assessment of TRACS(Traffic Adaptive Control System) (교통대응 신호제어 시스템의 효율성 평가)

  • 이영인
    • Journal of Korean Society of Transportation
    • /
    • v.13 no.1
    • /
    • pp.5-33
    • /
    • 1995
  • This paper addresses the outlines of the traffic signal timing principles engaged in TRACS and the results of field test. Research team, encompassing research institute, university, and electronic company, conducted the three-year project for developing the new system, named TRACS(Traffic Adaptive Control System). The project was successfully completed in 1994. TRACS aims at accomplishing the objectives of better traffic adaptability and more reliable travel time prediction. TRACS operates in real-time adjusting signal timings throughout the system in response to variations in traffic demand and system capacity. The purpose of TRACS is to control traffic on an area basis rather than on an isolated intersection basis. An other purpose of TRACS is to provide real-time road traffic information such as volume, speed, delay , travel time, and so on. The performance of the first version of TRACS was compared to the conventional TOD control through field test. The test result was promi ing in that TRACS consistantly outperformed the conventional control method. The change of signaltiming reacted timely to the variation of traffic demand. Extensive operational test of TRACS will be conducted this year, and some functions will be enhanced.

  • PDF