• Title/Summary/Keyword: Road Speed Prediction

Search Result 75, Processing Time 0.021 seconds

Prediction of Speed in Urban Freeway Having More Freight Vehicles - Based in I-696 in Michigan -

  • Kim, Tae-Gon;Jeong, Yeon-Woo
    • Journal of Navigation and Port Research
    • /
    • v.36 no.7
    • /
    • pp.591-597
    • /
    • 2012
  • Generally an urban freeway means a primary arterial which provides road users with a free-flow speed, except for ramp junctions during rush hours. However, most road users suffer from traffic congestion in the basic segments as well as in the ramp junctions of urban freeway during rush hours, because most road users prefer urban freeways to local roads in the urban areas. This study then intends to analyze lane traffic characteristics of urban freeway basic segments having more freight vehicles during rush hours, find the lane showing a high correlation with the segment speed between lane speeds, and finally suggest a segment-speed predictive model by the lane speed of urban freeway basic segments during rush hours.

Development of Road Surface Temperature Prediction Model using the Unified Model output (UM-Road) (UM 자료를 이용한 노면온도예측모델(UM-Road)의 개발)

  • Park, Moon-Soo;Joo, Seung Jin;Son, Young Tae
    • Atmosphere
    • /
    • v.24 no.4
    • /
    • pp.471-479
    • /
    • 2014
  • A road surface temperature prediction model (UM-Road) using input data of the Unified Model (UM) output and road physical properties is developed and verified with the use of the observed data at road weather information system. The UM outputs of air temperature, relative humidity, wind speed, downward shortwave radiation, net longwave radiation, precipitation and the road properties such as slope angles, albedo, thermal conductivity, heat capacity at maximum 7 depth are used. The net radiation is computed by a surface radiation energy balance, the ground heat flux at surface is estimated by a surface energy balance based on the Monin-Obukhov similarity, the ground heat transfer process is applied to predict the road surface temperature. If the observed road surface temperature exists, the simulated road surface temperature is corrected by mean bias during the last 24 hours. The developed UM-Road is verified using the observed data at road side for the period from 21 to 31 March 2013. It is found that the UM-Road simulates the diurnal trend and peak values of road surface temperature very well and the 50% (90%) of temperature difference lies within ${\pm}1.5^{\circ}C$ (${\pm}2.5^{\circ}C$) except for precipitation case.

A study on road ice prediction algorithm model and road ice prediction rate using algorithm model (도로 노면결빙 판정 알고리즘 연구와 알고리즘을 활용한 도로 결빙 적중률 연구)

  • Kang, Moon-Seok;Lim, Hee-Seob;Kwak, A-Mi-Roo;Lee, Geun-hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.6
    • /
    • pp.1355-1369
    • /
    • 2021
  • This study improved the algorithm for the road ice prediction algorithm and analyzed the prediction rate when comparing actual field measurement data and algorithm prediction value. For analysis, road and weather conditions were measured in Geumdong-ri, Sinbuk-myeon, Pocheon-si. First algorithm selected previous research result algorithm. And the 4th algorithm was improved according to the actual freezing conditions and measured values. Finally, five algorithms were developed: freezing by condensation, freezing by precipitation, freezing by snow, continuous freezing, and freezing by wind speed. When forecasting using an algorithm at the Pocheon site, the freezing hit rate was improved to 93.2%. When calculating the combination ratio for the algorithm. the algorithm for freezing due to condensation and the continuation of the frozen state accounted for 95.7%.

Computer simulation for the Prediction of Mobility and Tractive Performance of Tracked Vehicles (궤도형 로외차량의 주행 및 견인 성능 예측 컴퓨터 시뮬레이션)

  • 김경욱;신범수;김채주
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.3
    • /
    • pp.105-112
    • /
    • 1994
  • A computer program was developed for the simulation of mobility and tractive performance of tracked off-road vehicles. Input parameters for the simulation involve those characterizing track and power drive line of a vehicle and soil conditions upon which the vehicle operates. The simulation predicts tractive performance in terms of soil thrust and motion resistance of track device and mobility performance in terms of the maximum speed, time-distance and time-speed relation that a vehicle can obtain under the given soil conditions. It also determines whether or not the vehicle can move in those conditions. An example of performing simulation was presented and its results showed that the performance prediction was reasonably in a good agreement with the published data.

  • PDF

A Study on the Status and Prediction of Arterial Road Noise in Seoul, Korea (서울시 간선도로의 소음도 현황 및 예측식에 관한 고찰)

  • Park, Joon-Cheol;Kim, Yoon-Shin;Hong, Seung-Cheol;Choi, Joon-Gyu
    • Journal of Environmental Health Sciences
    • /
    • v.34 no.5
    • /
    • pp.395-402
    • /
    • 2008
  • Road traffic noise causes considerable disturbance and annoyance in exposed inhabitants. Particularly, arterial road noise is a significant environmental problem in many urban areas in which higher traffic volume and higher car speed occur. Arterial road noise became the target of this investigation in Seoul, South Korea. Noise levels were measured at four points that were based on distance from roadside at the same measurement site and under the conditions as reported by the National Institute of Environmental Research (NIER) in 1999. The average noise levels ($L_{eq,1h}$) of the arterial road was 80.3 dBA at 5 m, 77.4 dBA at 10 m, 73.7 dBA at 20 m, 70.9 dBA at 30 m. A comparison between 1999 and 2008's measurement values has shown that in 2008 noise level is up by about 1.5 dBA, traffic volume has increased by about 15.7%, while car speed has decrease by about 8%. The relationship between 2008' measured values and predicted values using the NIER Equation is low under 10 m from the roadside. The influence range of arterial noise is calculated at 26 m for road noise limits in daytime. In relation to the comparison between traffic volume and noise level, the equivalence in traffic volume (Light car+10xHeavy car) is higher than other variables.

Effects of measurements method for vehicle speed on thee prediction results of noise map (차량속도 측정방법이 소음지도 예측결과에 미치는 영향)

  • Park, In-Sun;Park, Sang-Kyu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.25-29
    • /
    • 2006
  • Noise map presents new alternatives of noise reduction counter measure and becomes important tool for making environmental policy. Many input factors such as road conditions, number of vehicles, speeds of vehicles are used for noise prediction of the noise map. However, results of noise prediction make difference depending on the values of the input factors. In this study, effect of measurement method for vehicle speeds all the prediction results of the noise map.

  • PDF

Effects of Measurement Method for Vehicle Speed on the Prediction Results of Noise Map (속도 측정방법에 따른 소음지도 예측결과 분석)

  • Park, In-Sun;Park, Sang-Kyu
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.2 s.119
    • /
    • pp.155-159
    • /
    • 2007
  • Noise map presents new alternatives of noise reduction counter measure and becomes important tool for making environmental policy. Many input factors such as road conditions, number of vehicles, speeds of vehicles are used for noise prediction of the noise map. However, results of noise prediction make difference depending on the values of the input factors. In this study, it researched effect of measurement method for vehicle speeds on the prediction results of the noise map.

Prediction Method for Road Traffic Noise (도로교통소음 예측방법에 관한 연구)

  • Kim, Ha-Geun;Sohn, Jang-Yeul;Kim, Heung-Sik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.100-108
    • /
    • 1995
  • This study is aimed to show that revised prediction method in road traffic noise after comparing prediction method of National Institute of Environmental Research with that of the Acoustical Society of Japan. For this purpose, prediction equation and caluation procedure of each case was programmized and data predicted by each method were compared with those measured in the 14 fields. The result show that data predicted by 14 fields. The result show that data predicted by the method proposed in this study were closer to the data measured in the fields than those predicted by National Institute of Environmental Research and the Acoustical Society of Japan in the surroundings of urban express way (include highway) and general traffic road where the vehicle speed is higher than 40km/h.

  • PDF

A Study on the Development of a Technique to Predict Missing Travel Speed Collected by Taxi Probe (결측 택시 Probe 통행속도 예측기법 개발에 관한 연구)

  • Yoon, Byoung Jo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1D
    • /
    • pp.43-50
    • /
    • 2011
  • The monitoring system for link travel speed using taxi probe is one of key sub-systems of ITS. Link travel speed collected by taxi probe has been widely employed for both monitoring the traffic states of urban road network and providing real-time travel time information. When sample size of taxi probe is small and link travel time is longer than a length of time interval to collect travel speed data, and in turn the missing state is inevitable. Under this missing state, link travel speed data is real-timely not collected. This missing state changes from single to multiple time intervals. Existing single interval prediction techniques can not generate multiple future states. For this reason, it is necessary to replace multiple missing states with the estimations generated by multi-interval prediction method. In this study, a multi-interval prediction method to generate the speed estimations of single and multiple future time step is introduced overcoming the shortcomings of short-term techniques. The model is developed based on Non-Parametric Regression (NPR), and outperformed single-interval prediction methods in terms of prediction accuracy in spite of multi-interval prediction scheme.

A Study on the Compensation of the Difference of Driving Behavior between the Driving Vehicle and Driving Simulator (가상주행과 실차주행의 운전자 주행행태 차이에 관한 연구)

  • Park, Jinho;Lim, Joonbeom;Joo, Sungkab;Lee, Soobeom
    • International Journal of Highway Engineering
    • /
    • v.17 no.2
    • /
    • pp.107-122
    • /
    • 2015
  • PURPOSES : The use of virtual driving tests to determine actual road driving behavior is increasing. However, the results indicate a gap between real and virtual driving under same road conditions road based on ergonomic factors, such as anxiety and speed. In the future, the use of virtual driving tests is expected to increase. For this reason, the purpose of this study is to analyze the gap between real and virtual driving on same road conditions and to use a calibration formula to allow for higher reliability of virtual driving tests. METHODS : An intelligent driving recorder was used to capture real driving. A driving simulator was used to record virtual driving. Additionally, a virtual driving map was made with the UC-Win/Road software. We gathered data including geometric structure information, driving information, driver information, and road operation information for real driving and virtual driving on the same road conditions. In this study we investigated a range of gaps, driving speeds, and lateral positions, and introduced a calibration formula to the virtual record to achieve the same record as the real driving situation by applying the effects of the main causes of discrepancy between the two (driving speed and lateral position) using a linear regression model. RESULTS: In the virtual driving test, driving speed and lateral position were determined to be higher and bigger than in the real Driving test, respectively. Additionally, the virtual driving test reduces the concentration, anxiety, and reality when compared to the real driving test. The formula includes four variables to produce the calibration: tangent driving speed, curve driving speed, tangent lateral position, and curve lateral position. However, the tangent lateral position was excluded because it was not statistically significant. CONCLUSIONS: The results of analyzing the formula from MPB (mean prediction bias), MAD (mean absolute deviation) is after applying the formula to the virtual driving test, similar to the real driving test so that the formula works. Because this study was conducted on a national, two-way road, the road speed limit was 80 km/h, and the lane width was 3.0-3.5 m. It works in the same condition road restrictively.