• Title/Summary/Keyword: Road Section

Search Result 638, Processing Time 0.021 seconds

Performance Evaluation Test of Rockfall Protection Fences for 100kJ Rockfall Protection Fences Development (100kJ급 낙석방지울타리 개발을 위한 기존 낙석방지울타리 성능평가 시험)

  • Jin, Hyunwoo;Hwang, Youngcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.3
    • /
    • pp.5-13
    • /
    • 2022
  • In this study a test was conducted to identify weak section using 100kJ class rock energy to find out the protection performance of rockfall prevention fences in Korea. Performance rating of the rockfall protection fences is very low (48~61kJ) compared to that of foreign countries and it is necessary to determine whether it can function properly if high rock energy is generated. Furthermore, a reinforcing technology that can improve to 100kJ energy on the existing rockfall protection fences should be developed. Therefore, this study confirmed the protection performance using 100kJ rock energy in the existing rockfall protection fence system (for national road, for highway) and identified weak section of post, wire ropes and nets. Furthermore, it will be used as basic data for developing 100kJ class reinforcement technology without dismantling the existing rockfall protection fence (48-61kJ).

Evaluation of AASHTO Joint Opening Equation Based on the Analysis of Joint Movement of Concrete Pavement in Korea highway Test Road (시험도로 줄눈콘크리트포장 줄눈폭 변화분석을 통한 AASHTO 줄눈폭 예측식 타당성 연구)

  • Choi, Jeong Keun;Jeong, Jin Hoon;Lee, Seung Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5D
    • /
    • pp.805-812
    • /
    • 2006
  • To investigate the usefulness of AASHTO joint opening equation, joint movement of Korea Highway Test Road was monitored and analyzed. The monitored section included Lean, Rubble, BB3 subbase. Demac gauges were installed at each joint in the monitored section, and joint movements with temperature changes were monitored. The measured joint movements with temperature change were then analyzed based on ER (Effective Ratio). The effect of subbase, which was considered as 'C' value in AASHTO equation, was not shown in the observed joint movement. To study the effcet of sealing on joint opening two unsealed sections were included in the monitored section, and no effects of sealing on joint movement were observed.

Autonomous Vehicle Situation Information Notification System (자율주행차량 상황 정보 알림 시스템)

  • Jinwoo Kim;Kitae Kim;Kyoung-Wook Min;Jeong Dan Choi
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.5
    • /
    • pp.216-223
    • /
    • 2023
  • As the technology and level of autonomous vehicles advance and they drive in more diverse road environments, an intuitive and efficient interaction system is needed to resolve and respond to the situations the vehicle faces. The development of driving technology from the perspective of autonomous driving has the ultimate goal of responding to situations involving humans or more. In particular, in complex road environments where mutual concessions must be made, the role of a system that can respond flexibly through efficient communication methods to understand each other's situation between vehicles or between pedestrians and vehicles is important. In order to resolve the status of the vehicle or the situation being faced, the provision and method of information must be intuitive and the efficient operation of an autonomous vehicle through interaction with intention is required. In this paper, we explain the vehicle structure and functions that can display information about the situation in which the autonomous vehicle driving in a living lab can drive stably and efficiently in a diverse and complex environment.

Review and Improvement of Highway Design Consistency Evaluation Models (설계 일관성 평가 모형의 고찰과 개선방안 연구)

  • Kim, Sang-Youp;Choi, Jai-Sung;Yang, Ji-Eun;Kim, Moon-Kyum
    • International Journal of Highway Engineering
    • /
    • v.8 no.4 s.30
    • /
    • pp.63-74
    • /
    • 2006
  • It's essential to meet the expectations of drivers through reasonable road design, which makes the drivers to recognize the conditions of road sufficiently. In this case, we could say that because the roads are consistently designed, drivers can make a safe and comfortable drive. There are so many studies about the alignment design consistency methods which are previously mentioned. In this study, Firstly we categorize the studies which are concerned with the estimation of the alignment design consistency methods and then apply the method which fits for the actual condition into the practice. And we'll make a realistic method by using the data which aye collected from the National Road. The developed model in this study is the predicting model including speed($V_t$) as the variable on the upper stream 100m of the curve. This model was developed which divided to two cases in the all directions of two lanes; One case is the $R{\leq}200m$ and another case is the R>200m. In the section of the $R{\leq}200m$, this case was influenced on the road alignment(R) and($V_t$) and another section was found that is affected to the speed($V_t$) on the upper stream loom rather than the effect of road alignment(R). In the case of all directions of four lanes, however, this study is predicted divided to two sections on the 400m of R, these section have more influenced to($V_t$) than the road alignment factors. This result of the four lanes was represented to different result with the two lanes. This study will further need development of the predicting model with the higher confidence through collecting data with more the exact data, the various road alignment data and speed of the several sections on the upper stream on the curve.

  • PDF

Developing Road Hazard Estimation Algorithms Based on Dynamic and Static Data (동적·정적 자료 기반 도로위험도 산정 알고리즘 개발)

  • Yang, Choongheon;Kim, Jinguk
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.4
    • /
    • pp.55-66
    • /
    • 2020
  • This study developed four algorithms and their associated indices that can quantify and qualify road hazards along roadways. Initially, relevant raw data can be collected from commercial vehicles by camera and DTG. Well-processed data, such as potholes, road freezing, and fog, can be generated from the Integrated management system. Road hazard algorithms combine these data with road inventory data in the Data Sharing Platform. Depending on well-processed data, four different road hazard algorithms and their associated indices were developed. To test the algorithms, an experimental plan based on passive DTG attached in probe vehicles was performed at two different test locations. Selection of the test routes was based on historical data. Although there were limitations using random data for commercial vehicles, hazardous roadways sections, such as fog, road freezing, and potholes, were generated based on actual historical data. As a result, no algorithm error was found in the entire test. Because this study provides road hazard information according to a section, not a point, it can be practically helpful to road users as well as road agencies.

Laser Scanner based Static Obstacle Detection Algorithm for Vehicle Localization on Lane Lost Section (차선 유실구간 측위를 위한 레이저 스캐너 기반 고정 장애물 탐지 알고리즘 개발)

  • Seo, Hotae;Park, Sungyoul;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.9 no.3
    • /
    • pp.24-30
    • /
    • 2017
  • This paper presents the development of laser scanner based static obstacle detection algorithm for vehicle localization on lane lost section. On urban autonomous driving, vehicle localization is based on lane information, GPS and digital map is required to ensure. However, in actual urban roads, the lane data may not come in due to traffic jams, intersections, weather conditions, faint lanes and so on. For lane lost section, lane based localization is limited or impossible. The proposed algorithm is designed to determine the lane existence by using reliability of front vision data and can be utilized on lane lost section. For the localization, the laser scanner is used to distinguish the static object through estimation and fusion process based on the speed information on radar data. Then, the laser scanner data are clustered to determine if the object is a static obstacle such as a fence, pole, curb and traffic light. The road boundary is extracted and localization is performed to determine the location of the ego vehicle by comparing with digital map by detection algorithm. It is shown that the localization using the proposed algorithm can contribute effectively to safe autonomous driving.

Evaluation of Pavement Smoothness on Optimized Rehabilitated Section (최소단면 보수지역의 평탄성 평가)

  • Park, Dae-Wook;Jin, Jung-Hoon
    • International Journal of Highway Engineering
    • /
    • v.12 no.2
    • /
    • pp.123-127
    • /
    • 2010
  • In this study, the profiles of optimized rehabilitated section was measured by a lightweight inertial profiler, and pavement smoothness was evaluated. To analyze the repeatability of the used lightweight profiler, two repeatable measurements were conducted. The agreement between two repeatable measurements were evaluated by Cross-correlation function. Pavement smoothness of the optimized rehabilitated pavement section and existing area was compared in terms of International Roughness Index and Profilograh Index. In general, the pavement smoothness of the rehabilitated sections was not good compared to the existing pavement sections. The analysis results could be used for the evaluation of pavement smoothness of the optimized rehabilitated pavement sections.

A Study on the Evaluation of Woody Tree Vitality of Artificial Ground: Case Study of Seoullo 7017

  • Park, Seong-uk;Hong, Youn-Soon
    • Journal of People, Plants, and Environment
    • /
    • v.24 no.1
    • /
    • pp.85-94
    • /
    • 2021
  • Background and objective: This study examined, compared, and analyzed the tree vitality of the trees growing on the artificial ground of Seoullo 7017 that transformed the overpass that was to be demolished into a "sky garden" using portable tree pots. Methods: Based on the summer season when the metabolic activity of plants is most active, this study measured the cambial electrical resistance in four directions(east, west, south and north), using the Shigometer (model OZ-93, Osmose) and compared the location and analysis of pots according to their means and standard errors. Results: Meanwhile, according to the analysis, vitality was relatively superior in pots with a big diameter, trees planted individually than in groups, trees of the ramp section rather than the bridge section, and in the southwest direction of the cambium. Conclusion: This study revealed the improper condition of the planting plan and implementation on the site, where various species of trees are displayed in a poor environment. Despite the significant assessment of the vitality of various trees introduced within Seoullo 7017 for the first time, this study is limited in that the data used were measured only once in summer. In this regard, it raised the need for continuous interest in and monitoring of a special plant environment and development of proper maintenance and management techniques, along with follow-up research on seasonal and temperature conditions, soil moisture and root development conditions to supplement this research.

EMOS: Enhanced moving object detection and classification via sensor fusion and noise filtering

  • Dongjin Lee;Seung-Jun Han;Kyoung-Wook Min;Jungdan Choi;Cheong Hee Park
    • ETRI Journal
    • /
    • v.45 no.5
    • /
    • pp.847-861
    • /
    • 2023
  • Dynamic object detection is essential for ensuring safe and reliable autonomous driving. Recently, light detection and ranging (LiDAR)-based object detection has been introduced and shown excellent performance on various benchmarks. Although LiDAR sensors have excellent accuracy in estimating distance, they lack texture or color information and have a lower resolution than conventional cameras. In addition, performance degradation occurs when a LiDAR-based object detection model is applied to different driving environments or when sensors from different LiDAR manufacturers are utilized owing to the domain gap phenomenon. To address these issues, a sensor-fusion-based object detection and classification method is proposed. The proposed method operates in real time, making it suitable for integration into autonomous vehicles. It performs well on our custom dataset and on publicly available datasets, demonstrating its effectiveness in real-world road environments. In addition, we will make available a novel three-dimensional moving object detection dataset called ETRI 3D MOD.

Identifying Roadway Sections Influenced by Speed Humps Using Survival Analysis (생존분석을 활용한 과속방지턱 영향구간 분석)

  • YOON, Gyugeun;JANG, Youlim;KHO, Seung-Young;LEE, Chungwon
    • Journal of Korean Society of Transportation
    • /
    • v.35 no.4
    • /
    • pp.261-277
    • /
    • 2017
  • This study defines influencing sections as the part of the road section where passing vehicles are traveling with the lower speed compared to speed limit due to speed humps. The influencing section was divided into 3 parts; influencing section before the speed hump, interval section, and influencing section after the speed hump. This analysis focused on the changes of each part depending on installation types, vehicle types, and daytime or nighttime. For the interval section, especially, the ratio of distance traveled with lower speed than speed limit to interval section is defined as effective influencing section ratio to be analyzed. Vehicle speed profiles were collected with a speed gun to extract influencing section lengths. The survival analysis was applied and estimated survival functions are compared with each other by several statistical tests. As a consequence, the average length of influencing section on the 50m sequential speed humps was 75.3% longer during the deceleration than that of isolated speed hump, and 18.9% during the acceleration. The effective influencing section ratio for the 30m and 50m sequential speed humps had a small difference of 81.0% and 76.0% while the absolute values of the section that passing speed were less than the speed limit were longer on 50m sequential speed humps, each being 24.3m and 38.0m. Using the log rank test, it was evident that sequential speed humps were more effective to increase the length of influencing sections compared to the isolated speed hump. Vehicle type was the strong factor for influencing section length on the isolated speed hump, but daytime or nighttime was not the effective one. This research result can be used for improving the efficiency selecting the installation point of speed humps for road safety and estimating the standard of the distance between sequential speed humps.