• Title/Summary/Keyword: River-reservoir

Search Result 654, Processing Time 0.574 seconds

Application of Algal Growth Potential Test (AGPT) on the Water Quality of the Chinyang Reservoir and the Nam River (진양호와 남강의 수질에 대한 Algal Growth Potential Test (AGPT) 적용)

  • Lee, Ok-Hee;Cho, Kyung-Je;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.1 s.102
    • /
    • pp.57-65
    • /
    • 2003
  • The algal growth potential test (AGPT) bioassay were conducted to assess the water quality and fertility in the Chinyang Reservoir and the lower part of the Nam River from August 2000 to July 2001, The AGPT value of the Chinyang Reservoir ranged from 0 to 23.4 mg dw $1^{-1}$, while 79% of the algae cultivation have not grown. The AGPT value was in proportion to phosphorus concentration of the water, and it was less when chlorophyll-a was high. This value was higher in the middle and lower layers than in the upper layer, and in the inflow part where the water is shallower than in the lacustrine. The AGPT value has increased in the whole reservoir in August${\sim}$September when the water volume is high. In contrast, the AGPT value in the Nam River varied greatly compared to that of the reservoir, and ranged from 0 to 252.0 mg dw $1^{-1}$ and 65% of the algae cultivation have grown. The value was less than 10 mg dw $1^{-1}$ in the upstream, over the point where the treated wastewater discharged. It was 57 mg dw $1^{-1}$ on the average in the downstream, except in March and July when the discharged water influenced greatly, exceeding the hypertrophic condition. The result of AGPT shows the differences in the time and space on the reservoir and the streams. The AGPT value has increased in July${\sim}$September, and in December in the inflow part of the reservoir; in March and August${\sim}$December in the lower part; and in January, May, and November in the streams. AGPT is useful not only in defining the influence of the limiting nutrients on the algal growth, but also in evaluating the nutrients fertility in the inland water.

Landslide Analysis of River Bank Affected by Water Level Fluctuation II (저수위 변동에 영향을 받는 강기슭의 산사태 해석 II)

  • Kim, You-Seong;Wang, Yu-Mei;Choi, Jae-Seon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.3
    • /
    • pp.87-93
    • /
    • 2010
  • The change of water level in reservoirs is an important factor causing failure of bank slopes, i.e. landslide. The water level of Three Gorges reservoir in China fluctuate between 145 m and 175 m, as a matter of flood control. During its normal operational state, the rate of water level fluctuation is supposed to range from 0.67 m/d to 3.0 m/d. Majiagou slope is located on the left bank of Zhaxi River, 2.1 km up from the outlet. Zhaxi River is a tributary of the Yangtze River within the Three Gorges area, of which the water level changes with the reservoir. At the back of Majiagou slope, a 20 m long and 3~10 cm wide fissure developed just after the reservoir water level rose from 95 m to 135 m in 2003. This big fissure was a full suggestion of potential failure of this slope. In this study, the pore water pressure files obtained from seepage analysis were used to evaluate the change in factor of safety (FS) with reservoir water level. Slope stability analyses then were carried out, with fully specified slip surface and limit equilibrium method. In the limit equilibrium analysis, the contribution of negative pore water pressure to shear strength was considered by the use of Fredlund's shear strength equation for unsaturated soils. On the base of the analyses, the change of FS with reservoir water level was interpreted in detail. It was found that FS against bank slopes decreases with the rise of the reservoir water level and increases with the drawdown of the reservoir water level. The most dangerous state was when the reservoir water level stays at the highest for a long time.

  • PDF

IMPLEMENTATION OF A DECISION SUPPORT SYSTEM FOR INTEGRATED RIVER BASIN WATER MANAGEMENT IN KOREA

  • Shim Soon-Do;Shim Kyu-Cheoul
    • Water Engineering Research
    • /
    • v.5 no.4
    • /
    • pp.157-176
    • /
    • 2004
  • This research presents a prototype development and implementation of Decision Support System (DSS) for integrated river basin water management for the flood control. The DSS consists of Relational Database Management System, Hydrologic Data Monitoring System, Spatial Analysis Module, Spatial and Temporal Analysis for Rainfall Event Tool, Flood Forecasting Module, Real-Time Operation of Multi Reservoir System, and Dialog Module with Graphical User Interface and Graphic Display Systems. The developed DSS provides an automated process of alternative evaluation and selection within a flexible, fully integrated, interactive, centered relational database management system in a user-friendly computer environment. The river basin decision-maker for the flood control should expect that she or he could manage the flood events more effectively by fully grasping the hydrologic situation throughout the basin.

  • PDF

Water Quality Modeling of the Eutrophic Transition Zone in a River-Type Reservoir Paldang (부영양화된 하천형 호소(팔당호) 전이대의 수질모델링)

  • Kong, Dongsoo
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.4
    • /
    • pp.429-440
    • /
    • 2014
  • This study was conducted to investigate the main cause of water quality deterioration during the spring season in the transition zone between the South Han River and the river-reservoir Paldang. A water quality model modified from QUAL2E (U.S.EPA) was used, and the model showed that eutrophication and algal production in the low flow season affected about 60% of the organic pollution at the downstream of the South Han River. This result means that phosphorus control is prior to external organic material management to ameliorate the deterioration of water quality in the water body.

A Stochastic Dynamic Programming Model to Derive Monthly Operating Policy of a Multi-Reservoir System (댐 군 월별 운영 정책의 도출을 위한 추계적 동적 계획 모형)

  • Lim, Dong-Gyu;Kim, Jae-Hee;Kim, Sheung-Kown
    • Korean Management Science Review
    • /
    • v.29 no.1
    • /
    • pp.1-14
    • /
    • 2012
  • The goal of the multi-reservoir operation planning is to provide an optimal release plan that maximize the reservoir storage and hydropower generation while minimizing the spillages. However, the reservoir operation is difficult due to the uncertainty associated with inflows. In order to consider the uncertain inflows in the reservoir operating problem, we present a Stochastic Dynamic Programming (SDP) model based on the markov decision process (MDP). The objective of the model is to maximize the expected value of the system performance that is the weighted sum of all expected objective values. With the SDP model, multi-reservoir operating rule can be derived, and it also generates the steady state probabilities of reservoir storage and inflow as output. We applied the model to the Geum-river basin in Korea and could generate a multi-reservoir monthly operating plan that can consider the uncertainty of inflow.

Evaluating Future Stream Flow by Operation of Agricultural Reservoir Group considering the RCP 8.5 Climate Change Scenario (RCP 8.5 기후변화 시나리오를 고려한 농업용 저수지군 운영에 따른 미래 하천유량 평가)

  • Lee, Jaenam;Noh, Jaekyoung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.5
    • /
    • pp.113-122
    • /
    • 2015
  • This study aims to evaluate future stream flow by the operation of agricultural reservoir group at the upper stream of the Miho River. Four agricultural reservoirs with storage capacities greater than one million cubic meters within the watershed were selected, and the RCP 8.5 climate change scenario was applied to simulate reservoir water storage and stream flow assuming that there are no changes in greenhouse gas reduction. Reservoir operation scenarios were classified into four types depending on the supply of instream flow, and the water supply reliability of each reservoir in terms of water supply under different reservoir operation scenarios was analyzed. In addition, flow duration at the watershed outlet was evaluated. The results showed that the overall run-off ratio of the upper stream watershed of the Miho River will decrease in the future. The future water supply reliability of the reservoirs decreased even when they did not supply instream flow during their operation. It would also be difficult to supply instream flow during non-irrigation periods or throughout the year (January-December); however, operating the reservoir based on the operating rule curve should improve the water supply reliability. In particular, when instream flow was not supplied, high flow increased, and when it was supplied, abundant flow, ordinary flow, and low flow increased. Drought flow increased when instream flow was supplied throughout the year. Therefore, the operation of the agricultural reservoirs in accordance with the operating rule curve is expected to increase stream flow by controlling the water supply to cope with climate change.

Change of Flood Characteristics in the Down Stream of Keum River after the Ken River Estuary Dam Construction (금강하구언 건설후 금강하류의 홍수흐름특성변화)

  • 박승기;문종필;민진우;김태철;안병기
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.41-46
    • /
    • 1998
  • The purpose of the study was changed of Flood Characteristics in Down stream of Keum River by the Keum River Estuary Dam Construction. The water surface slope of Kuem river after the Keum River Estuary Dam construction was steeper then before. The flood control capacity increase after construction. But, Increasing sediment in Kuem river will be decreased flesh reservoir volume for yield irrigation.

  • PDF

Dissolved Organic Matters Characteristics in Freshwater

  • Park, Je-Chul;Oh, Young-Taek;Bae, Sang-Deuk;Ryu, Dong-Kyeong
    • Proceedings of the Korea Society of Environmental Biology Conference
    • /
    • 2004.05a
    • /
    • pp.26-26
    • /
    • 2004
  • This study was conducted to evaluate the characteristics of dissolved orgamc matters based on their origins. The dissolved organic carbon(DOC) represents an index for dissolved organic matter and basically regarded as a source of organic pollution. The monthly variations and vertical profiles of dissolved organic carbon(DOC) in Kumoh reservoir were surveyed from May 2001 to April 2002. In addition, other areas such as river, reservoir, sewage and industrial wastewater were also surveyed in summer 2001. Kumoh reservoir was divided with depth into three layers .: epilimnion, metalimnion and hypolimnion. The proportion of total DOC(T-DOC) was classified by labile DOC(L-DOC) and refractory DOC(R-DOC) on the basis of long-term incubation. DOC of freshwater and Kumoh reservoir was ranged to be 1.6~4.1 mgC/L and 2.1~4.0 mgC/L, respectively. L-DOC accounted for 3~30% of DOC from watershed. Therefore, refractory dissolved organic carbon(R-DOC) was major component of DOC in the watershed. The decomposition rate(k) ranged from 0.008 $d^{-1}$ to 0.083 $d^{-1}$ in Kumoh reservoir. The highest decomposition rate(k) was observed at River Hoein III freshwater. Therefore, modified total organic carbon analyzer is needed to be applied for effective management of dissolved organic matter.

  • PDF

Empirical recommendation for planning the observation density of water level in a reservoir (Case study on Hwacheon Dam in Korea) (저수지 수위 관측밀도 제안: 화천댐 중심으로)

  • Hwang-Bo, Jong Gu;Hong, Jun Hyuk
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.10
    • /
    • pp.835-841
    • /
    • 2022
  • The water level of the dam reservoir is an important data in the operation of the dam. reservoir storage can be calculated by using water levels or prepared for disasters such as drought and floods. However, the water level is measured near the dam, making it difficult to represent a reservoir with a large area, and there is a high possibility that the water surface will be distorted due to discharge. Furthermore, the results of the survey showed that the water level of the reservoir is irregular rather than constant, and the water level of the reservoir is repeatedly falling and rising by section. In order to calculate such a complex and irregular representative water level, the water level observation density of the reservoir must be increased. In this study, we tried to derive the optimum water level observation density for Hwacheon Dam. A reasonable water level measurement density was derived by investigating the water level elevation of the reservoir and statistically analyzing it. The observation density may vary depending on the size of the reservoir, so the same analysis was conducted on the Goesan Dam and Boseonggang Dam. According to the results, four Hwacheon dams, three Goesan dams, and seven Boseong River dams are needed for observation density.

Evaluation of Application to Pre-Developed Delivery Load Equation at Upper Watershed of the Daechung Reservoir (대청호 상류유역의 기 개발된 유달부하량 산정식의 적용성 평가)

  • Lee, Jun-Bae;Kim, Kap-Soon;Lee, Kyu-Seung;Yoon, Young-Sam;Lim, Byung-Jin;Jung, Jae-Woon
    • Korean Journal of Environmental Agriculture
    • /
    • v.31 no.1
    • /
    • pp.16-23
    • /
    • 2012
  • BACKGROUND: To improve the Daechung reservoir water quality, a quantitative estimation of the delivery load from upper watershed need to be conducted prior to others. To do so, an intensive monitoring is necessary because of the complexity and uncertainty of the delivery load from uppper watershed. However, intensive monitoring need to invest much time, cost, and effort. So, many researcher have developed an equation to estimate the delivery loads. But, relatively little research has been conducted on the applicability of pre-developed equation using other sites. Therefore, the objective of this study was to evaluate application of the equation for BOD, T-N and T-P delivery load. METHODS AND RESULTS: To verify the applicability of the equation, the following equation was used; Delivery loads(kg/day)=generated pollutant loads${\times}(1-{\alpha}){\times}$(daily outflow/${\beta})^{\gamma}$. The equations could be calculated the daily delivery loads of streams without any data of water quality, only with the data of daily runoff of study sites. The equations were applied to Youngdogcheon, Chogangcheon, Bocheongcheon, Sookcheon to examine its applicability using monitoring data. The results showed that the estimated delivery loads were in a good agreement with the observed data and indicated reasonable applicability of the equations. CONCLUSION(s): Overall, the equations were satisfactory in estimation of delivery loads at upper watershed of the Daechung reservoir. Therefore, the equations could be contributed to better water quality management in the Daechung reservoir.