• Title/Summary/Keyword: River-reservoir

Search Result 654, Processing Time 0.026 seconds

Simple Material Budget Modeling for the Paldang Reservoir in the Spring Season (팔당호의 춘계 단순물질수지 모델링)

  • Kong, Dongsoo
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.6
    • /
    • pp.696-714
    • /
    • 2017
  • Simple material budget models were developed to predict the spring season (March ~ May) water quality for a river-type reservoir Paldang, in the Republic of Korea. These models are available at mixed water bodies whose light intensity is negligible at the bottom. The calculated data from the models fit quite well with field data collected for 30 years, from 1988 to 2017. The apparent settling velocity of total phosphorus was estimated to be $110m\;d^{-1}$. The critical hydraulic load that determines the usability of phosphorus for algal production appeared to be about $2.0m\;d^{-1}$. When a hydraulic load was larger than the critical value, the concentrations of chlorophyll ${\alpha}$ ($Chl.{\alpha}$), chemical oxygen demand (COD), and 5-day biochemical oxygen demand BOD in the reservoir water became insensitive to internal algal reactions. The model analysis showed that the allochthonous COD continued to increase while the allochthonous BOD slightly decreased after 1999. The decrease of allochthonous BOD is due to the expansion of sewage and wastewater treatment plants in the watershed. The increase of allochthonous COD seems to result from the increase in anthropogenic non-point sources as well as the increase in the discharge of natural organic matters due to climate change. Organic matter of algal origin continued to increase until the mid-2000s, but recently it has decreased as the phosphorus concentration has decreased. The COD and BOD of algal origin increased from 35 % and 27 % during 1988 ~ 1994 to 43 % and 40 % during 2000 ~ 2010, respectively, and then decreased to 25 % and 28 % during 2011 ~ 2017.

Development of Optimal Reservoir System Operation Model for Water Supply by Applying MIP Technique and Reappraisal of Water Supply Capability of Nakdong River Basin (MIP에 의한 댐군연계운영 최적화모형 개발과 개발 모형에 의한 낙동강수계 용수공급능력 재평가)

  • Choe, Yeong-Song;An, Gyeong-Su;Park, Myeong-Gi
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.4
    • /
    • pp.447-459
    • /
    • 2000
  • Since the development of water resources is getting more difficult than ever before because of human-sociological condition, it would be necessary to develop a practically applicable technique for the management of water resources based on demand-side concept that could reduce unusable release for more effective and appropriate allocation of limited water resources. The objective of the study is to develop an optimal reservoir system operation model for water supply and energy augmentation by the combination of water budget analysis method in downstream area by MIP technique. The applicable study of the developed model was carried out and water supply capability of Nakdong river basin was re-evaluated by the developed model. The model has been found successful to guarantee appropriate water supply to the basin by means of deficit-supply management method and also turned out to be more practical tool for an optimal reservoir system operation model than other existing models.

  • PDF

A Development of Intelligent Pumping Station Operation System Using Deep Reinforcement Learning (심층 강화학습을 이용한 지능형 빗물펌프장 운영 시스템 개발)

  • Kang, Seung-Ho;Park, Jung-Hyun;Joo, Jin-Gul
    • Convergence Security Journal
    • /
    • v.20 no.1
    • /
    • pp.33-40
    • /
    • 2020
  • The rainwater pumping station located near a river prevents river overflow and flood damages by operating several pumps according to the appropriate rules against the reservoir. At the present time, almost all of rainwater pumping stations employ pumping policies based on the simple rules depending only on the water level of reservoir. The ongoing climate change caused by global warming makes it increasingly difficult to predict the amount of rainfall. Therefore, it is difficult to cope with changes in the water level of reservoirs through the simple pumping policy. In this paper, we propose a pump operating method based on deep reinforcement learning which has the ability to select the appropriate number of operating pumps to keep the reservoir to the proper water level using the information of the amount of rainfall, the water volume and current water level of the reservoir. In order to evaluate the performance of the proposed method, the simulations are performed using Storm Water Management Model(SWMM), a dynamic rainfall-runoff-routing simulation model, and the performance of the method is compared with that of a pumping policy being in use in the field.

The optimal operation of reservoir systems during flood season (홍수기 저수지의 최적연계운영)

  • Han, Kun-Yeun;Choi, Hyun-Gu;Kim, Dong-Il;Lee, Kyeong-Teak
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.743-746
    • /
    • 2008
  • Recently, due to the effect of global warming and extreme rainfall, the magnitude of flood disaster and the frequency of flood is rapidly increasing. In order to mitigate the damage of human and property from this kind of meteorological phenomenon and manage water resources scientifically, effective operation of dam and reservoir is very important. In case of Andong dam which was not performed a flood control function needs to develop new types of dam safety management measure because of recent extraordinary flood by typhoons. In case of Andong dam and Imha dam, I am using HEC-5 model in order to apply reservoir simulation. In this case, complex conditions among 100-year floods , 200-year floods and PMF was used. Also, I modified the maximum outflow 3,800m3/s into 3,490m3/s and applied this modified discharge in order to secure freeboard in the downstream. In an analysis that I applied modified outflow by 100-year floods and 200-year floods to, the result showed that river didn't overflow in Andong area but some other places have relatively low freeboard. In the cases that I modified maximum outflow, results showed that freeboard of levee is larger than existed simulation. In the simulation that I applied 200-year floods and PMF to and under a condition connected with PMF, results showed overflowing the levees. Because of the difference between the frequency of dam outflow and the design flood in river, it is required to improve the existed flood plan in the downstream of Andong dam. As a result of this study, the optimal operation of reservoir systems can be proposed to mitigate the flood damage in the downstream of Andong dam and also can be used to establish the flood plans.

  • PDF

Development of Reservoir Operation Model using Simulation Technique in Flood Season(II) (모의기법에 의한 홍수기 저수지 운영 모형 개발(II))

  • Sing, Yong-Lo;Maeng, Sung-Jin;Ko, Ick-Hwan;Lee, Hwan-Ki
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.6
    • /
    • pp.797-805
    • /
    • 2002
  • The EV ROM, a joint reservoir operation model for flood control that accounts for the downstream flow condition, has been introduced in the preceding article (Shin et al, 2000). A joint reservoir operation model computer program for the Geum river basin, developed by FORTRAN Power Station 4.0 using the EV ROM, is hereby presented. Three case studies of flood control by joint operation of the Yongdam and Daechung Multipurpose Dams in the Geum river basin revealed that the performance of the EV ROM was superior to the existing Rigid ROM and Technical ROM. This is because the EV ROM can account for the downstream flow condition as well as the upstream inflow and the reservoir water level. In order to apply for various floods events in the future, consistent improvement of the developed EV ROM and efforts for more accurate rainfall prediction are required.

A Study for Storage Reallocation of Multipurpose Reservoir(II) - Conservation Storage Analysis (다목적댐 용량 재할당에 대한 연구(II)- 이수용량 분석)

  • Yi, Jae-Eung;Kwon, Yong-Ik
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.4
    • /
    • pp.283-292
    • /
    • 2004
  • In the past, it was unnecessary to consider the reallocation of reservoir storage because new reservoir construction was relatively not difficult. However, it became necessary since it is so difficult to construct new reservoirs in these days. In this study, the change of the water supply capability is evaluated through conservation storage drawdown frequency analysis, hydropower analysis, reliability, resiliency and vulnerability analyses for Geum River basin. As a result, it is confirmed that water supply capability of Daechung reservoir can be increased by reallocating flood control storage to conservation storage.

Hydro-meteorological Effects on Water Quality Variability in Paldang Reservoir, Confluent Area of the South-Han River-North-Han River-Gyeongan Stream, Korea (남·북한강과 경안천 합류 수역 팔당호의 수질 변동성에 대한 기상·수문학적 영향)

  • Hwang, Soon-Jin;Kim, Keonhee;Park, Chaehong;Seo, Wanbum;Choi, Bong-Geun;Eum, Hyun Soo;Park, Myung-Hwan;Noh, Hye Ran;Sim, Yeon Bo;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.4
    • /
    • pp.354-374
    • /
    • 2016
  • This study explored spatiotemporal variability of water quality in correspondence with hydrometeorological factors in the five stations of Paldang Reservoir located in the Han River during 4 years from May 2012 to December 2015. Variability of basic water quality factors were largely related with seasonal fluctuations of hydrology. Temperature stratification occurred in the deep dam station, and prolonged hypoxia was observed during the draught year. Nitrogen nutrients were increased with decreasing inflow in which changing pattern of $NH_4$ reversed to $NO_3$ by the effect of treated wastewater effluent. Phosphorus increase was manifest during the period of high inflow or severe drought. Chl-a variation was reversely related with both flow change and AGP(algal growth potential) variations. Our study demonstrated that water quality variability in Paldang Reservoir was largely attributed to both natural and operational changes of inflow and outflow (including water intake) based on major pollution source of the treated wastewater (total amount of $472{\times}10^3m^3d^{-1}$) entering to the water system from watershed. In the process of water quality variability, meteorological (e.g., flood, typhoon, abnormal rainfall, scorching heat of summer) and hydrological factors (inflow and discharge) were likely to work dynamically with nutrients pulse, dilution, absorption, concentration and sedimentation. We underline comprehensive limnological study related to hydro-meteorolology to understand short- and long-term water quality variability in river-type large reservoir and suggest the necessity of P-free wastewater treatment for the effective measure of reducing pollution level of Paldang drinking water resource.

Water Supply Capacity of the Keum River Barrage Dam Based on Inflow Scenario (유입량 시나리오에 따른 금강하구둑의 용수공급능력 분석)

  • Noh, Jae-Kyoung;Kim, Dae-Hyun
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.499-502
    • /
    • 2003
  • Using the daily water balance model of the Keum River Barrage Dam, water supply capacity was analyzed. The scenario of reservoir inflow was selected to case with Daechung dam, case with no dam, case with Yongdam dams. Runoffs in 12 sub watersheds were simulated by the DAWAST model considered return flows.

  • PDF

Estimation of Storage Deficit by Run's Characteritics (Runs의 특성에 의한 지속기간별 저수부족량의 추정)

  • 강관원;안경수
    • Water for future
    • /
    • v.19 no.4
    • /
    • pp.329-338
    • /
    • 1986
  • the purpose of this study is to estimate the storage deficit by Run's Characteristics of (-)Run-length and (-)Run-sum. Runoff data are obtained from the guaging stations of Y대-Ju in Hanriver Basin, Wae-Gwan in Nak Dong River Basin and Gyo Am in Geum River Basin. In order to estimate the storage deficit, runhydrographs are established with each return period of 10, 30, ......, 200 years and regression equation is derived from relationship between (-) run-length and storage deficit. From the comparison of estimated reservoir storage with observed values., it was proved that this suggested method can be used for the estimation of the storage deficit.

  • PDF

Relationship between Limnological Characteristics and Algal Bloom in Lake-type and River-Type Reservoirs, Korea (호소형 및 하천형 댐 호의 육수학적 특성과 조류발생과의 상관관계)

  • Kim, Jong-Min;Heo, Seong-Nam;Noh, Hye-Ran;Yang, Hee-Jeong;Han, Myung-Soo
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.2 s.103
    • /
    • pp.124-138
    • /
    • 2003
  • This paper aimed to analyze the relationship between alga3 bloom patterns and hydrological, limnological data which were collected from major reservoirs in Korea for 8 years (1990${\sim}$1997). Water temperature of river-type reservoirs showed wider seasonal fluctuations than that of lake-type. pH of lake-type reservoirs was low in winter season but high in summer season. In contrast, river-type reservoirs showed high pH in spring and autumn seasons as well, and very low in summer season. COD of lake-type reservoirs and Paldang reservoir was lower (2${\sim}$3 mg/L) than that of Geumgang and Nagdonggang reservoirs (6${\sim}$9 mg/L). Dissolved oxygen (DO) of river-type reservoirs was higher than that of lake-type reservoirs. Seasonal fluctuation pattern of DO saturation in river-type reservoirs was high (80 ${\sim}$100%) and remained relatively constant whereas lake-type reservoirs showed the highest level (93%) in late spring or early summer, which gradually decreased entering winter season(46${\sim}$06%). And monthly variation of DO saturation showed inverse proportion to water volume in lake-type reservoirs. Nutrients concentration in river-type lake is higher than lake-type. Seasonal fluctuation of nutrients (T-N, T-P) in lake-type reservoirs was relatively small than that of river-type reservoirs. Annual mean N/P mass ratio of lake-type reservoirs was higher than that of river-type. Transparency tended to related with the suspended solid concentration in river-type reservoirs. Algal bloom of lake-type and river-type reservoirs occurred at any time except rainfall and winter periods. And it dominated in summer and early autumn, respectively. Algal bloom of river-type reservoirs was higher than that of lake-type. Relationship between rainfall and chlorophyll- a in lake-type reservoirs was relatively high, however river-type reservoirs showed insignificant.