• Title/Summary/Keyword: River beds

Search Result 38, Processing Time 0.022 seconds

Prediction of time dependent local scour around bridge piers in non-cohesive and cohesive beds using machine learning technique (기계학습을 이용한 비점성토 및 점성토 지반에서 시간의존 교각주위 국부세굴의 예측)

  • Choi, Sung-Uk;Choi, Seongwook;Choi, Byungwoong
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.12
    • /
    • pp.1275-1284
    • /
    • 2021
  • This paper presents a machine learning technique applied to prediction of time-dependent local scour around bridge piers in both non-cohesive and cohesive beds. The support vector machines (SVM), which is known to be free from overfitting, is used. The time-dependent scour depths are expressed by 7 and 9 variables for the non-cohesive and cohesive beds, respectively. The SVM models are trained and validated with time series data from different sources of experiments. Resulting Mean Absolute Percentage Error (MAPE) indicates that the models are trained and validated properly. Comparisons are made with the results from Choi and Choi's formula and Scour Rate in Cohesive Soils (SRICOS) method by Briaud et al., as well as measured data. This study reveals that the SVM is capable of predicting time-dependent local scour in both non-cohesive and cohesive beds under the condition that sufficient data of good quality are provided.

Studies on river otter habitat use pattern on Hongchun river in Gangwon province (강원도 홍천강 유역에 서식하는 수달의 서식지이용에 관한 연구)

  • Park, Bo-Hyun;Lee, Sangdon
    • Journal of Wetlands Research
    • /
    • v.14 no.3
    • /
    • pp.413-418
    • /
    • 2012
  • In this study, both habitat use analysis by rumen contents of Eurasian river otter (Lutra lutra) were carried out to investigate the preference of habitat environment and diet using their fecal samples. As the target sites, two streams (the Naechon-cheon and the Koonup-cheon) were selected in the upstream of the Hongcheon river, Hongcheon County, Gangwon Province. A total of 478 track samples (e.g., feces, scent and footprint) were found during the survey periods (May to November, 2009 and November, 2010). The dominant points, where the tracks of river otters were observed, were areas with the low depth(0.5-1m) and the slow flow velocity (5m/sec). Also, both rocks and rock-beds were preferred but artificial facilities were avoided. This ecological study of river otters using habitat use analysis and diet analysis by rumen contents will be useful fundamental information to conserve the river otter populations, and to protect their habitats.

Stable Channel Design for the Gravel-bed River Considering Design Constraints (설계구속인자를 고려한 자갈하상 하천의 안정하도 설계)

  • Ji, Un;Jang, Eun-Kyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2860-2867
    • /
    • 2015
  • Stable channel design is to determine the width, depth and slope for satisfying the condition that the upstream incoming sediment rate is equal to the sediment transport rate at the design channel. Therefore, the most sensitive variable when designing a stable channel is the selection of a sediment transport equation applied for the channel design. Especially if in the case of gravel beds the designer uses the equation developed by using the data of sand rivers, the calculation result of the stable channel section has large errors. In this study, the stable channel design has been applied to the gravel bed river using the previous stable channel design program with newly added the sediment transport equation for gravel beds; and the stable channel section considering design constraints has been produced by using the analytical method. As results, in the case of the application with the fixed width, the depth predicted by Ackers and White's equation was the shallowest and Meyer-Peter and $M\ddot{u}ller's$ equation was 0.8 m deeper than the current section of 2.4 m. In the case of the application with the fixed depth, the width predicted by Engelund and Hansen's equation was twice wider than the current section and by Meyer-Peter and $M\ddot{u}ller's$ equation was 20 m wider than the current section of 44 m.

Origin, Age and Sedimentation Rate of Mid-Geum River Sediments (금강 중류 하상 퇴적층의 기원과 형성시기 및 퇴적율)

  • Oh, Keun-Chang;Kim, Ju-Yong;Yang, Dong-Yoon;Hong, Sei-Sun;Lee, Jin-Young;Lim, Jae-Soo
    • Economic and Environmental Geology
    • /
    • v.43 no.4
    • /
    • pp.333-341
    • /
    • 2010
  • Fluvial sediments are widely distributed in present and old river-beds of the mid-Keum River, the tributaries of which are the Yugu and Jeongan Rivers. The basement of the mid-Keum River area consists of Mesozoic granites which are easily eroded compared to Precambrian gneisses, which are exposed in the upper-Keum River area. The provenance of the fluvial sediments includes both the Precambrian gneisses and Mesozoic granites, which occur in the catchment of the mid-Keum River. The coarse-grained sediments were probably transported from the river-beds and the overbank floodings of the main Keum River and its tributaries when the climate was warm and wet. The oldest mud deposits were dated at ca. 9,400 yr BP by the radiocarbon method. It has been estimated that the sand deposits below the dated muds were formed in a period from the Late Pleistocene to the Early Holocene. However we have revealed that the major part of the present river-bed sediments was formed at ca. 3,000-6,000 yr BP, i.e., in the mid- to late Holocene, when summer monsoon was very strong due to climatic changes. We have calculated fluvial sedimentation rates of 0.12-0.16 cm/yr and 0.02-0.09 cm/yr for borehole KJ-29 river-bed sediments and borehole KJ-28 floodplain deposits, respectively. We conclude that the sedimentation rate is higher near the present stream channel than near the floodplain.

Preference of Physical Microhabitat on the $1^{st}$-class Endangered Species, Gobiobotia naktongensis inhabiting the Gam Stream, Tributary of the Nakdong River

  • Seo, Jin-Won;Kim, Hee-Sung;Yi, Hye-Suk;Jeong, Sun-A
    • Korean Journal of Ecology and Environment
    • /
    • v.42 no.4
    • /
    • pp.495-501
    • /
    • 2009
  • The study was conducted in 2007~2008 in order to understand preference of physical microhabitat on the $1^{st}$-class endangered species, Gobiobotia naktongensis inhabiting the Gam Stream, tributary of Nakdong River. The total number of fish caught from the study sites was 3,671 representing 7 families 24 species. There were 8 Korean endemic species including Odontobutis platycephala, and 2 introduced species (Carassius cuvieri, Micropterus salmoides) were found. According to investigation and analysis of physical microhabitat on Gobiobotia naktongensis caught in the Gam Stream, a total of 57 individuals were found at shallow depth (0.14~0.46 m) and run (0.239~0.585m $sec^{-1}$). As a result of sieve analysis, stream beds consisted of about 1% gravel and 99% sand (83.4% coarse sand, 15.6% find sand). Therefore, Gobiobotia naktongensis seemed to inhabit shallow-run with coarse sand bed than deep-pool microhabitat. The findings indicate preference of physical microhabitat on Gobiobotia naktongensis, and it is important to enhance efficiency of fish conservation and ecological restoration with understanding species-specific characteristics in microhabitat including protected species.

A Study on the Landforms Near of Mooseom Village, Naeseongcheon (내성천 무섬마을 인근의 하천 지형 특성에 대한 연구)

  • Kim, Jong Yeon;Shin, Won Jeong
    • Journal of The Geomorphological Association of Korea
    • /
    • v.26 no.3
    • /
    • pp.1-17
    • /
    • 2019
  • Naeseongcheon is Korea's representative sand stream, and it is one of the regions where the dynamic changes of various river topography developed in the sand bed can be observed. Most of drainage area near of the river channel are formed with Daebo granite, and the granite weathering zone is developed at the surface of hill. Due to the massive input of sediment flux, braided channel reaches are found some of the area. However, the results of the study shows that the alluvial layer is very thin in some reaches. In addition, bedrock or weathered materials, including the Tors are exposed at the channel beds. On the other hand, during the flood, a considerable amount of sediment was introduced, causing the massive sediment to be close to 1m thick. In addition, despite the short distance, large changes in the particle size and sorting of the sediment were observed. Vegetation, on the other hand, has been shown to have a significant effect on the development of the overall channel bed topography, as reported in previous studies. In small floods or low water levels, vegetation's protection role of the surface is predominates, but in large flood conditions, herbaceous loss at the surface of the point bars, accelerating the erosion of surface.

A Study on Geomorphic Environments and Sediments of Channels at Naeseongcheon River in Gyeongpook Province (경북 내성천의 하도 지형 환경 및 퇴적물 분석)

  • Lee, Gwang-Ryul;Cho, Yong-Dong;Kim, Dae-Sik;Kim, Jung-Suk;Jeong, Woo-Heon;Cho, Hyun-Jin;Yun, Kuk-Hyun
    • Journal of the Korean association of regional geographers
    • /
    • v.16 no.2
    • /
    • pp.85-99
    • /
    • 2010
  • This study analyzes the geomorphic environments of river channels and properties of sediments in the Naeseong-River basin, a branch of Nakdong-River. While the area at NU1 located in the uppermost reaches indicates the landscapes with the gravel riverbeds, the sand riverbeds can be seen in the downstream of NU2 whose basin consists mostly of the granite regolith. The downstream of NU2 has the braided channels in the beds and this may be due to the large quantities of sand particles supply to the bed under the favorable geologic and geomorphic conditions, properties of river flowing within the floodplains less resistant to the erosion and great fluctuations of discharges. Whereas the river at NU2 may seem that sand particles are actively eroded during the high water-level periods, the particles may be actively deposited during the periods at NM2 and NL2. Moreover, in the reaches of NU2 to NM1 and NL1 to NL2, the mean grain sizes of sediments increase downstream suggesting the other supplies of coarse sediments from the lower order streams running the steep slopes because the river flows in the areas consisting of the metamorphic rocks rather than the granites and shows the properties of incised meander.

  • PDF

Study on physical habitat suitability of Gobiobotia naktongensis in Naeseong Stream according to change of bed grain size (내성천 하상 입경 변화에 따른 흰수마자의 물리 서식 적합도 분석)

  • Lee, Dong Yeol;Park, Jae Hyun;Baek, Kyong Oh
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.9
    • /
    • pp.553-562
    • /
    • 2023
  • The Gobiobotia naktongensis is a species endemic to Korea, and it has recently been designated as a class I endangered species of freshwater fish. Naeseong Stream, one of the tributaries of the Nakdong River, where the Gobiobotia naktongensis was first discovered, provided an optimal habitat for the Gobiobotia naktongensis in the past with fine sand beds and riffle. Currently, due to the construction of Yeongju Dam and the excessive dredging of river channels by the local government, the riverbed armoring in the downstream area of the dam is undergoing rapid changes, and as a result, the habitat environment of the Gobiobotia naktongensis is deteriorating. In this study, the variations of the habitat suitability of the Gobiobotia naktongensis due to the change in the riverbed grain size of the Naeseong Stream were analyzed based on the WUA (weight usable area) using the physical habitat model, River2D. The study domain is the reach from Seoktap Bridge to Hoeryong Bridge downstream of Yeongju Dam. The change in riverbed grain size was analyzed using D50 acquired in 2010 and 2020, respectively. The substrate grain size of Naeseong Stream in 2020 was thicker than that in 2010, and the riverbed coarsening phenomenon was evident overall. As a result of the River2D analysis, the area in which the Gobiobotia naktongensis could inhabit was only about 0.75% in 2010 compared to the entire area of the flow, and even this decreased to 0.55% in 2020 due to riverbed armoring.

Study on relations between porosity and damage in fractured rock mass

  • Xue, Xinhua
    • Geomechanics and Engineering
    • /
    • v.9 no.1
    • /
    • pp.15-24
    • /
    • 2015
  • The porosity is often regarded as a linear function of fluid pressure in porous media and permeability is approximately looked as constants. However, for some scenarios such as unconsolidated sand beds, abnormal high pressured oil formation or large deformation of porous media for pore pressure dropped greatly, the change in porosity is not a linear function of fluid pressure in porous media, and permeability can't keep a constant yet. This paper mainly deals with the relationship between the damage variable and permeability properties of a deforming media, which can be considered as an exploratory attempt in this field.

Formation behaviour of Bromate in Processes of Advanced Water Treatment System using Nakdong river water (고도정수처리 공정에서 브로메이트의 거동 평가)

  • Kim, Young-Jin;Hyun, Kil-Soo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.4
    • /
    • pp.605-610
    • /
    • 2011
  • The objectives of this study are to investigate a bromate behaviour in the processes of advanced water treatment system (AWTS: preozonation, coagulator-settler, rapid sand filter, postozonation, biological activated carbon (BAC) beds) and to investigate the effects of ozonation, pH and ammonia nitrogen on bromate (${BrO^-}_3$) formation. As a result, $BrO_3$ was not detected in the processes of the AWTS without ozonation, while it was detected in a preozonated and postozonated water. For $BrO_3$ formation during June to November, the $BrO_3$ concentration of <9.4${\mu}g/L$ was observed in postozonated water, while it was reduced to about 46% by BAC beds. When applied ozone dosage and ozone contact time for influent with $Br^-$ of <0.3mg/L were 0.5-2.0mg/L.min and 10 min., $BrO_3$ concentration increased with increasing ozone dosage. Longer contact time and lower ozone level also was needed to inhibit the formation of $BrO_3$. At ozone dosage of 1.4 mg/L.min, the formation rate of $BrO_3$ increased with increase of pH value. When $NH_4-N$ concentration increased from 0.1mg/L to 0.4mg/L, $BrO_3$ concentration decreased to about 38%. These results revealed that $BrO_3$ concentration increased with increasing Br level, ozone dosage, and pH value, while it decreased with increase of $NH_4-N$ concentration.