• Title/Summary/Keyword: River Sand

Search Result 702, Processing Time 0.036 seconds

Research on the Ground Water Developement in the Region of Choong Nam Province (충남지역의 지하수개발에 관한 조사)

  • 민병섭
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.11 no.4
    • /
    • pp.1827-1831
    • /
    • 1969
  • Resulties of research on the capacity of ground water of 994 concrete-pipe-wells and 97 infiltration-gallerys in ground-water-developement-works region executed from March to Julyin 1969, in Choong Chung Nam Do, and research on the quality of ground water for 88 wells for home-use around of River Geum Area, are as fellows: (1) Thickness of aquifer is no more than 2.85m averagely even at river-overflowed plain, alluvial plain and valley plain area that are estimated to contain ground water mostly. And so, it is guessed that ground water capacity is not much especially. (2) Soil of aquifer of the above area is sand or gravel and it is estimated to be good for ground water developement and its mean permeability coefficient is bout $2.5{\times}10^{-3}$(m/sec), and its porosity is about 33.9%. (3) The quality of ground water is good for irrigation water exception of delta plain area. Warm water plan is to need for irrigation water when water temperature is less than 19 degrees below zero. (4) Prospect of ground water developement, judging from quality and quantity, expects to lay infiltration gallery under the ground at river bed in order to utilize under-flow-water of river bed, river-overflowed plain, alluvial plain and valley plain that ground level is less than 50m. (5) Collectable water volume of under-flow-water of river bed is about 450 to $750m^3/day$ to be able to irrigate 3ha to 5ha of the cultivated land in case that infiltration gallery length is 50m and its depth is about 5m. (6) Collectable water volume at river-overflowed plain, alluvial plain and valley plain area, is estimated $150m^3/day$ to be able to irrigated 1ha of the cultivated land.

  • PDF

Characteristics of soil and eco-friendly media for improving the filterability and water quality in soil filtration (하천수질정화용 토양여과의 여과용량 증대와 수질 개선을 위한 친환경 여재 특성 비교)

  • Ki, Dong-Won;Cho, Kang-Woo;Won, Se-Yoen;Song, Kyung-Guen;Ahn, Kyu-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.4
    • /
    • pp.453-462
    • /
    • 2010
  • Nowadays, the challenges of ensuring good water quality and quantity of river are becoming more important for human society, but there has been troublesome for purifying river water. In this study, we performed the fundamental study of a river water treatment system using riverside soil and eco-friendly optimal media for improving river water quality and can also treat a large amount of river water. As the results of the physical and chemical characterization of the two different soils (Kyungan and Chungrang, The Republic of Korea), which were collected from real stream sides in the Han River basin, and five kinds of media (zeolite, perlite, steel slag, woodchip and mulch), both soils were all classified as a sand, and effective size ($D_{10}$) and uniformity coefficient (U) of the soil were about 0.2 mm and 4 or so, respectively. Through the batch and column experiments with the soil and eco-friendly media, zeolite and mulch were found to be efficient for decreasing nitrogen. In addition, steel slag was especially superior to the other media for phosphorus removal. From soil reforming tests volume ratios were 2.8, 1, and 1 of Kyungan soil, zeolite, and steel slag hydraulic conductivity of mixed soil was increased $1.30{\times}10^{-2}$ from $2.85{\times}10^{-3}$ of Kyungan soil, and the removal efficiencies of nitrogen and phosphorus were also improved. These results show that reforming of the soil enhanced the purification of a large amount of water, and zeolite, mulch, and steel slag might be facilitated as proper functional media.

Influence Analysis for Natural River Bed with Dam Construction (댐 건설이 하류하천 하상에 미치는 영향 분석)

  • Choo, Tai Ho;Chae, Soo Kwon
    • Journal of Wetlands Research
    • /
    • v.14 no.4
    • /
    • pp.715-723
    • /
    • 2012
  • The Hoelyongpo in the Naeseong River as tributary basin of the Nakdong River is broadly well-known a tourist attraction, which is made of sandy beach, and is called "Island of Inland". But Construction of the Dam was planned at upstream of river. In other words, an influx of sediment is blocked from upstream of river. In this situation, through sediment discharge coming from tributary of the Naeseong river, the whether to go ahead of sand beach of the Hoelyongpo is analyzed by using 1-D and 2-D model. The sediment discharge is estimated through ratio raw with basin area, and the instream flow requirement of river coming from dam and the flow rate and sediment coming from tributary are inputted for model. The 1-D model uses HEC-6 and the 2-D model uses SMS(RMA2 and SED2D). The analysis using the HEC-6 is performed from cross section data 10 year ago to the present cross section. Consequently, Yang equation presenting similar result to the present cross section data is determined, using this, the prediction is conducted for the cross section after 20 years. The 2-D analysis is conducted for the present cross section data. The value of distinction between a deposition and erosion with the results presented in the 1, 2-D models is occur, however, the appearance between the deposition and the erosion is similar.

Geochemical Characteristics and Pollution Assessment of Surface Sediments in the Nakdong River Estuary (낙동강 하구 표층 퇴적물의 지화학적 특성 및 오염도 평가)

  • Jeon, Hye-Lyn;Lee, Hye-Yun;Yang, Deuk-Seok;Kim, Shin
    • Journal of Environmental Science International
    • /
    • v.30 no.6
    • /
    • pp.487-500
    • /
    • 2021
  • To evaluate the geochemical characteristics and assess the pollution in surface sediments of the Nakdong River estuary, two sites adjacent to the estuary bank (Hh1 and Hh2) and one site at the upper part of the estuary bank (Hh3) were investigated. The surface sediments were analyzed for their contents of metals (Cu, Pb, Ni, Cr, Zn, and Al), organic matter (IL, COD, TOC, and TN), and grain size from 2018 to 2020. As a result of the pollution assessment, there was little anthropogenic contamination by most of the metals. The surface sediments in Hh2 had comparatively abundant silt and clay, whereas the other sites were mainly composed of sand. The organic index and contents of organic matter were highest at Hh2. Multivariate statistical analyses (cluster analysis and Pearson correlation analysis) showed that the contents of organic matter and pollution were associated with fine sediment. These results suggest that the geochemical characteristics were changed by the estuary bank built in the research area and that the increase in fine sediment attributable to the low-energy environment resulted in an increase in organic matter pollution.

Potential of River Bottom and Bank Erosion for River Restoration after Dam Slit in the Mountain Stream

  • Kang, Ji-Hyun;So, Kazama
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.46-46
    • /
    • 2011
  • Severe sediment erosion during floods occur disaster and economic losses, but general sediment erosion is basic mechanism to move sediment from upstream to downstream river. In addition, it is important process to change river form. Check dam, which is constructed in mountain stream, play a vital role such as control of sudden debris flow, but it has negative aspects to river ecosystem. Now a day, check dam of open type is an alternative plan to recover river biological diversity and ecosystem through sediment transport while maintaining the function of disaster control. The purpose of this paper is to verify sediment erosion progress of river bottom and bank as first step for river restoration after dam slit by cross-sectional shear stress and critical shear stress. Study area is upstream reach of slit check dam in mountain stream, named Wasada, in Japan. The check dam was slit with two passages in August, 2010. The transects were surveyed for four upstream cross-sections, 7.4 m, 34 m, 86 m, and 150 m distance from dam in October 2010. Sediment size was surveyed at river bottom and bank. Sediment of cobble size was found at the wetted bottom, and small size particles of sand to medium gravel composed river bank. Discharge was $2.5\;m^3/s$ and bottom slope was 0.027 m/m. Excess shear stress (${\tau}_{ex}$) was calculated for hydraulic erosion by subtracting the values of critical shear stress (${\tau}_{c}$) from the value of shear stress (${\tau}$) at river bottom and bank (${\tau}_{ex}=\tau-{\tau}_c$). Shear stress of river bottom (${\tau}_{bottom}$) was calculated using the cross-sectional shear stress, and bank shear stress (${\tau}_{bank}$) was calculated from the method of Flintham and Carling (1988). $${\tau}_{bank}={\tau}^*SF_{bank}((B+P_{bed})/(2^*P_{bank}))$$ where $SF_{bank}=1.77(P_{bed}/p_{bank}+1.5)^{-1.4}$, B is the water surface width, $P_{bed}$ and $P_{bank}$ are wetted parameter of the bed and bank. Estimated values for ${\tau}_{bottom}$ for a flow of $2.5\;m^3/s$ were lower as 25.0 (7.5 m cross-section), 25.7 (34 m), 21.3 (86 m) and 19.8 (150 m), in N/$m^2$, than critical shear stress (${\tau}_c=62.1\;N/m^2$) with cobble of 64 mm. The values were insufficient to erode cobble sediment. In contrast, even if the values of ${\tau}_{bank}$ were lower than the values for ${\tau}_{bottom}$ as 18.7 (7.5 m), 19.3 (34 m), 16.1 (86 m) and 14.7 (150 m), in N/$m^2$, excess shear stresses were calculated at the three cross-sections of 7.5 m, 34 m, and 86 m distances compare with ${\tau}_c$ is 15.5 N/$m^2$ of 16mm gravel. Bank shear stresses were sufficient for erosion of the medium gravel to sand. Therefore there is potential to erode lateral bank than downward erosion in a flow of $2.5\;m^3/s$. Undercutting of the wetted bank can causes bank scour or collapse, therefore this channel has potential to become wider at the same time. This research is about a potential of sediment erosion, and the result could not verify with real data. Therefore it need next step for verification. In addition an erosion mechanism for river restoration is not simple because discharge distribution is variable by snow-melting or rainy season, and a function for disaster control will recover by big precipitation event. Therefore it needs to consider the relationship between continuous discharge change and sediment erosion.

  • PDF

A Study on Wind-drift Sand Deposition by Vegetation and Coastal Debris using a Wind Tunnel Test (식생 및 해안표착물에 의한 비사 퇴적 풍동실험 연구)

  • Je, Young Jun;Jeon, Yong Ho;Yoon, Han Sam
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.3
    • /
    • pp.163-170
    • /
    • 2013
  • The correlation and interaction mechanisms between marine debris and the vegetation zone were studied on the Jinu-do natural beach of the Nakdong river estuary. Laboratory wind tunnel experiments were carried out under the wind-field and bottom-sand conditions using wind tunnel test equipment to investigate the sedimentation characteristics of wind-drift sand deposition around marine debris and the vegetation zone. The major environmental factors/loads considered in this study were the motion of sand by wind on the beach, deposition of marine debris, and change in the vegetation zone/line. When the marine debris was installed in the wind tunnel, deposition at the front of the structure appeared first by wind action, and then deposition developed from behind at 70% of the front ground level. In contrast, in the case of vegetation, the deposition phenomenon appeared first from behind the vegetation zone/line, and was 60% higher than the front. When the height of the debris and vegetation was the same, the required experimental time to bury the vegetation completely was about twice that of the marine debris.

Differences between Sand and Gravel Bars of Streams in Patterns of Vegetation Succession

  • Lee, Chang-Seok;Cho, Yong-Chan;Shin, Hyun-Cheol;Park, Sung-Ae
    • Journal of Ecology and Environment
    • /
    • v.32 no.1
    • /
    • pp.55-60
    • /
    • 2009
  • We analyzed the factors driving succession and the structure, and dynamics of vegetation on sand and gravel bars in order to clarify the differences in vegetation succession in rivers with different river bed substrates. Woody plant communities (dominated by Salix), perennial herb communities (dominated by Miscanthus), and annual plant communities (dominated by Persicaria) appeared in that order from upstream to downstream on the sandbar. The results of DCA ordination based on vegetation data reflected a successional trend. This result suggests that sandbars grow in a downstream direction. Various vegetation types different in successional stage, such as grassland, young stands of Korean red pine (Pinus densiflora), two-layered stands of young and mature pines, and mature pine stands also occurred on gravel bars, but the vegetation in earlier successional stage was established upstream, which is the opposite to the direction found on sandbars. Those results demonstrate that the dynamics of the bed load itself could be a factor affecting vegetation succession in rivers. In fact, sands suspended by running water were transported downstream over the vegetated area of sand bar and thereby created new areas of sandbar on the downstream end of the sandbar. Meanwhile, gravel, which is heavy and thereby is shifted by strong water currents, accumulated on the upstream end of the vegetated area, and thus created new areas of gravel bar in that direction. These results showed that allogenic processes drive vegetation succession on sand and gravel bars in streams and rivers.

Characteristics of Time Variations of PM10 Concentrations in Busan and Interpreting Its Generation Mechanism Using Meteorological Variables (부산 지역 미세먼지 농도의 시간변동 특성 및 기상인자 분석을 통한 먼지생성 해석)

  • Kim, Ji-A;Jin, Hyung-Ah;Kim, Cheol-Hee
    • Journal of Environmental Science International
    • /
    • v.16 no.10
    • /
    • pp.1157-1167
    • /
    • 2007
  • In an effort to interpret the characteristics of fine particle concentrations in Busan, time variations of hourly monitored concentrations $PM_{10}$ (Particulate Matter with aerodynamic Diameter ${\le}10\;{\mu}m$) in Busan are analyzed for the period from 2000 to 2005. The characteristics of aerosol second generation formation process is also interpreted qualitatively, by using the statistical analysis of the meteorological variables including temperature, wind speed, and relative humidity. The result shows some significant annual, seasonal, weekly and diurnal variations of $PM_{10}$ concentrations. In particular, seasonal(i.e., spring) variations are governed by frequency of yellow sand events even for the non-yellow sand cases where yellow-sand days are eliminated in our analysis. However, in seasonal variation, summer season predominate lower $PM_{10}$ concentrations due to the frequent precipitation, and weekly and diurnal variations are both found to be reflecting the emission rate from traffic amount. Correlation coefficients between $PM_{10}$ concentration and meterological variables for non-yellow sand days show overall negative correlation with visibility, wind speed, cloud amounts, and relative humidity. However for non-precipitation days, during non-yellow sand period positive correlation are found clearly with relative humidity, suggesting the importance of secondary aerosol formation in Busan that can be achieved by both homogeneous aerosol formation and heterogeneous transformations resulting from hygroscopic aerosol characteristics.

Removal of Ammonia Nitrogen and Reduction of THMs in Low Temperature by BAC Pilot Plant (BAC Pilot Plant 를 이용한 겨울철 암모니아성 질소 제거 및 THMs 변화)

  • Kang, Eun-Jo;Seo, Young-Jin;Lee, Won-Kwon;Chun, Pyoung-Hee;Lee, Ji-Hyung;Yoon, Jung-Hyo;Kim, Dong-Youn
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.9 no.4
    • /
    • pp.107-114
    • /
    • 1995
  • The raw drinking water quality is getting worse because of the winter drought and the conventional treatment system is'nt suitable to obtain the satisfied quality of water. So, the advanced water system, BAC(Biological Activated Carbon) process is said to be effective to remove dissolved organics and ammonia nitrogen. In our study, the BAC pilot plant using Nak-dong river water is tested in low temperature. Following results are found from the study. The ammonia nitrogen removal rate of BAC system using wood-based carbon (PICABIOL) was 99% in $6^{\circ}C$ temperature. Chlorine dosage in wood-based BAC effluent was reduced to 67% of that in sand filtered wate. It resulted from the removal of ammonia nitrogen. Also, THM formed by chlorine addition in wood-based BAC effluent was decreased to 65% of that in sand filtered water. In the case of dual-filter, the removal efficiency of ammonia nitrogen was increased 30% more than in conventional sand filter. According to this result, the ammonia nitrogen load to BAC system could be lessened by the use of dual-filter.

  • PDF

Liquefaction Judgement on Saemangeum with GIS (새만금지역에서 GIS를 이용한 광역액상화 판정)

  • Song, Byung-Woong;Kim, Gun-Ho;Yoo, Jin-Ho;Kim, Hong-Taek
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.49-59
    • /
    • 2010
  • Earthquake-induced liquefaction on saturated loose sand is well known in the world. Since Saemangeum Dike Project has a plan to be reclaimed with dredged sand on wide river, possibility of liquefaction should be checked. Section Dongjin5 was selected to evaluate possibility of liquefaction. Estimating method follows as 1) determination of PL value with SPT results, passing curve, and soil properties, 2) prediction for maximum earthquake acceleration, 3) calculation for FL value on depth with Korean specification for highway bridges, 4) visualization for possibility of liquefaction on all of project area with GIS 5) comparison with Japanese specification for highway bridges, Youd and Idriss method, and Andrus and Stokoe II method for verification, 6) ascertainment for the potential liquefaction with cyclic triaxial test. 7) establishing for countermeasure if needed. From the results, even though most of area covered with sand, no potential liquefaction exists except some areas. Those need to soil improvement with grout or attaching measurement on substructure.

  • PDF