DOI QR코드

DOI QR Code

Characteristics of Time Variations of PM10 Concentrations in Busan and Interpreting Its Generation Mechanism Using Meteorological Variables

부산 지역 미세먼지 농도의 시간변동 특성 및 기상인자 분석을 통한 먼지생성 해석

  • Kim, Ji-A (Division of Earth Environmental System, Atmospheric Science Major, Pusan National University) ;
  • Jin, Hyung-Ah (Nakdong River Basin Environmental Office) ;
  • Kim, Cheol-Hee (Division of Earth Environmental System, Atmospheric Science Major, Pusan National University)
  • 김지아 (부산대학교 지구환경시스템학부 대기환경과학) ;
  • 진형아 (환경부 낙동강유역환경청 대기분석과) ;
  • 김철희 (부산대학교 지구환경시스템학부 대기환경과학)
  • Published : 2007.10.31

Abstract

In an effort to interpret the characteristics of fine particle concentrations in Busan, time variations of hourly monitored concentrations $PM_{10}$ (Particulate Matter with aerodynamic Diameter ${\le}10\;{\mu}m$) in Busan are analyzed for the period from 2000 to 2005. The characteristics of aerosol second generation formation process is also interpreted qualitatively, by using the statistical analysis of the meteorological variables including temperature, wind speed, and relative humidity. The result shows some significant annual, seasonal, weekly and diurnal variations of $PM_{10}$ concentrations. In particular, seasonal(i.e., spring) variations are governed by frequency of yellow sand events even for the non-yellow sand cases where yellow-sand days are eliminated in our analysis. However, in seasonal variation, summer season predominate lower $PM_{10}$ concentrations due to the frequent precipitation, and weekly and diurnal variations are both found to be reflecting the emission rate from traffic amount. Correlation coefficients between $PM_{10}$ concentration and meterological variables for non-yellow sand days show overall negative correlation with visibility, wind speed, cloud amounts, and relative humidity. However for non-precipitation days, during non-yellow sand period positive correlation are found clearly with relative humidity, suggesting the importance of secondary aerosol formation in Busan that can be achieved by both homogeneous aerosol formation and heterogeneous transformations resulting from hygroscopic aerosol characteristics.

Keywords

References

  1. Sokolik I. N., Toon O. B., 1996, Direct radiative forcing by anthropogenic airborme mineral aerosols, Nature, 381, 681-683 https://doi.org/10.1038/381681a0
  2. Houghton J. T., Meria Filho L. G., Callander B. A., Harris N., Kattenberg A., Maskell K., 1995, The Science of Climate Change, Camvbridge University Press., 572pp
  3. Peterson P. K., Wagman J., 1997, Mass and composition of an urban aerosol as a function of particle size for several visiblity levels, J Aerosol Sci., 8, 269-279
  4. 김기영, 전연신, 오성남, 2000, 기단의 유형과 이동경로에 따른 대기 중 에어러솔 광학 깊이의 특성, 한국기상학회지, 36(4), 487-498
  5. Robert J. F., Welsing P. R., Rozzi C., 1994, $PM_{10}$ and ozone control strategy to improve visibility in the Los Angeles basin, Atmos. Envir., 28, 3277-3283 https://doi.org/10.1016/1352-2310(94)00160-M
  6. Liu C., Smith M. H., 1995, Urban and rural aerosol particle optical properties, Atmos. Envir., 29, 3293-3301 https://doi.org/10.1016/1352-2310(95)00236-R
  7. 김현탁, 전영신, 이상삼, 2004, 2003년 봄철 서울의 TSP와 $PM_{10}$농도 특성, 한국 기상학회지, 40(5), 587-602
  8. Krzyzanowski M., 1995, Overview of health impacts of particulate matter in Europe, WHO ECEH Bonn Office Joint WHO/Convetion Task Force on Health
  9. Styer P., McMillan N., Gao F., Davis J, Sacks J, 1995, Effect of outdoor airborne paritculate matter on daily death counts, Environ. Health Perspect., 103, 490-497 https://doi.org/10.2307/3432588
  10. 조용성, 이종태, 김윤신, 김호, 하은희, 박혜숙, 2003, 전국 7개 대도시를 중심으로 대기오염물질과 일일 사망 발생의 상관성 연구(1998-2001), 한국대기환경학회지, 35, 59-61
  11. 진윤하, 2004, 서울지역 $PM_{10}$ 농도 특성과 바람장과의 관계, 석사학위 논문, 지구환경과학부, 서울대학, 서울
  12. 조완근, 권기동, 2004, 대구지역 $PM_{10}$ 오염관리를 위한 시각적 및 공간적 오염 특성 평가, 한국환경과학회지, 13(1), 27-36
  13. Ackermann-Liebrich U., Leuenberger P. H., Schwartz J., Schindler C. H., Monn C. H., 1997, Lung function and long term exposure to air pollutants in Switzerland, Am. J. Resp. Crit. Care Med., 155, 122-129 https://doi.org/10.1164/ajrccm.155.1.9001300
  14. Larsen R., 1973, An air quality data analysis system for interrelating effects, standards, and needed source reduction, JAPCA., 23, 933-939
  15. 황승식, 조수헌, 권호장, 2005, 2002년 봄 서울지역에 발생한 심한 황사가 일변 사망에 미치는 영향, 대한예방의학회지, 38(2), 197-202
  16. Satoshi K., 1978, Estimation of natural burden to aerosols in urban air, 1978, J Air Poll Control Assoc., 13, 252
  17. Yoon Y. H., 1990, On the yellow sand transported to the Korean Peninsula, J Korean Met Soc., 26(2), 111-120
  18. 임영희, 안창혁, 박계영, 정성환, 주영수, 2003, 황사 기간 중 천식환자에서 대기 중 미세먼지($PM_{10}$)가 최대호기 유속과 호흡기 증상에 미치는 영향, 대한결힉 및 호흡기학회지, 55(6), 570-579
  19. 박준호, 박지연, 김모근, 임호진, 2006, 대구 대기 중 $PM_{25}$$PM_{10}$의 수용성 이온 성분, 한국대기환경학회지, 2006년 추계학술대회논문집 391-392
  20. 이영섭, 김현구, 박종석, 김희경, 2006, 변수변환을 통한 포항지역 미세먼지의 통계적 예보모형에 관한 연구, 한국대기환경학회지, 22(5), 614-626
  21. Chang Y. S., Carmichael G. R., Kurita H., Ueda H., 1989, The transport and formation of photochemical oxidants in central Japan, Atmos. Envir., 23, 363-396 https://doi.org/10.1016/0004-6981(89)90584-2
  22. Kuntasal G., Chang T. Y., 1987, Trends and relationships of $O_3$, $NO_x$, and HC in the south coast air basin of California, J. Air Pollut. Control Assoc., 37, 1158-1163 https://doi.org/10.1080/08940630.1987.10466309
  23. Wolff G. T., Lioy P. J., 1978, An empirical model for forecasting maximum daily ozone levels in the northeastern United States, J. Air Pollut. Control Assoc., 28, 7034-1038
  24. Vogel B., Fiedler F., Vogel H., 1995, Influence of topography and biogenic volatile organic components emission in the state of Baden-Wurttemberg on ozone concentrations during episodes of high air temperatures, J. Geophys. Res., 100, D11, 22, 097-22, 928 https://doi.org/10.1029/94JA02347
  25. 박일수, 이덕길, 강인구, 1991, 서울지역 겨울철 $SO_2$ 농도를 지배하는 기상인자, 한국대기본전학회지, 7(2), 96-104
  26. 김우규, 전영신, 이현환, 김현미, 1995, 서울 부유분진 농도의 황사 특성에 관한 사례 연구, 한국대기보전학회지, 11(2), 199-209
  27. Vakeva M., Hameri K., Puhakka T., Nilson E., Hohti K., Makela J., 2000, Effects of meterological process on aerosol particle size distribution in an urban background area, J. Geophy. Res., 105, 9, 807-9, 821
  28. Laakso L., Hussein T., Aarnio P., Kpomppula M., Hiltunen V., Viisanen Y., Kulumala M., 2003, Diurnal and annual characteristics of particle mass and number in urban, rural and Arctic environment in Finland, Atmos. Environ., 37(19), 2629-2641
  29. 김유근,이화운,홍정혜,2001,부산지역 지표 바람장의 특성에 관한 연구,한국환경과학회지,10(2),135-142
  30. 김유근,이화운,전병일,홍정혜,문윤섭,1996,부산연안지역에서의 대기오염 기상 예보시스템 개발에 관환 연구,한국환경과학회지,5(4),399-410
  31. 오인보,김유근,황미경,2004,연안도시지역 해풍지연이 오존 분포에 미치는 영향, 한국환경과학회지, 20(3), 345-360
  32. National Research Council., 1991, Rethinking the ozone program in urban and regional air pollution, NATIONAL ACADEMY PRESS Washington., 28p
  33. Welxer A. S., 1994, Modeling urban and regional aerosols -I. Model development, Atmos. Environ., 28, 531-549 https://doi.org/10.1016/1352-2310(94)90129-5

Cited by

  1. Measurement and Interpretation of Time Variations of Particulate Matter Observed in the Busan Coastal Area in Korea vol.5, pp.2, 2011, https://doi.org/10.5572/ajae.2011.5.2.105
  2. Estimation of PM10 source locations in Busan using PSCF model vol.24, pp.6, 2015, https://doi.org/10.5322/JESI.2015.24.6.793
  3. and Meteorological Data in Pohang, a Steel-Industrial City vol.32, pp.3, 2016, https://doi.org/10.5572/KOSAE.2016.32.3.329