• Title/Summary/Keyword: River Network

Search Result 452, Processing Time 0.026 seconds

Sampling Error Variation due to Rainfall Seasonality

  • Yoo, Chulsang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2001.05a
    • /
    • pp.7-14
    • /
    • 2001
  • In this study, we characterized the variation of sampling errors using the Waymire-Gupta-rodriguez-Iturbe multi-dimensional rainfall model (WGR model). The parameters used for this study are those derived by Jung et al. (2000) for the Han River Basin using a genetic algorithm technique. The sampling error problems considering in this study are those far using raingauge network, satellite observation and also for both combined. The characterization of sampling errors was done for each month and also for the downstream plain area and the upstream mountain area, separately. As results of the study we conclude: (1) The pattern of sampling errors estimated are obviously different from the seasonal pattern of mentally rainfall amounts. This result may be understood from the fact that the sampling error is estimated not simply by considering the rainfall amounts, but by considering all the mechanisms controlling the rainfall propagation along with its generation and decay. As the major mechanism of moisture source to the Korean Peninsula is obviously different each month, it seems rather norma1 to provide different pattern of sampling errors from that of monthly rainfall amounts. (2) The sampling errors estimated for the upstream mountain area is about twice higher than those for the down stream plain area. It is believed to be because of the higher variability of rainfall in the upstream mountain area than in the down stream plain area.

  • PDF

Analysis of Propagation Characteristics of a Song Sung when Weeding a Rice in Chungcheongbuk-do Using the Geomorphic Elements: The Case of Short Bang-a and Sangsa ryu (지형요소를 활용한 충북 논매기소리의 전파 특성 분석: 짧은방아 및 상사류를 사례로)

  • Park, Hyun-Su;JANG, Dong-Ho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.23 no.2
    • /
    • pp.61-70
    • /
    • 2016
  • This study intended to analyze the spatial distribution of two types of weeding song (Short Bang-a and Sangsa ryu) and how geomorphic elements influence the propagation of the songs in Chungcheongbuk-do area. The distribution of the two types of song was mapped as point data. According to the result, both types showed similar distribution pattern. In order to figure out the reason of this similarity, the distribution pattern of songs was analyzed at various scales based on geomorphic elements including river, mountain and lineament. The result showed that most of distribution pattern of songs followed the lineament direction. Also, the spatial continuity among mountain that was formed by large and small lineament in various directions could be the path of the cultural diffusion. If the lineament with same direction does not intersect other lineament that have different direction, spatial continuity would be blocked. Consequently it was confirmed that propagation of songs has not spread smoothly.

Calibration and Validation of a Streamflow Network Model for Predicting discharge on a Downstream River of a Reservoir (저수지 하류의 유량 모의를 위한 하천망 모형의 보정 및 검정)

  • Song, Jung Hun;Kang, Moon Seong;Song, Inhong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.432-432
    • /
    • 2015
  • 농업용 저수지의 하류유역은 저수지로부터 농업용수를 공급받는 관개지구와 산림지 등 관개를 실시하지 않는 비관개지구의 수문순환이 복합적으로 연계된다. 이러한 저수지 하류유역의 하천유량은 배후 유역에서 발생하는 유역 유출량, 관개지구의 농업용수 회귀수량, 저수지에서 방류되는 환경용수 방류량과 제한수위 및 만수위 방류량, 그리고 지하수 유출량 등으로 구성된다. 본 연구에서는 저수지 하류의 하천유량 구성 요소를 해석하는 하천망 모형을 구성하였고, 대상지구의 자료를 구축하였으며, 모형의 보정 및 검정을 수행하였다. 비관개지구의 유출량 모의는 수정 3단 Tank 모형을 이용하였다. 관개지구의 배수량은 논 포장 배수량과 용수로 배수량을 구분하여 모의하며, 논 포장 배수량은 논 물수지식을 기반으로 모의하였다. 저수지 방류량은 저수지 유입량과 저수지 운영방식을 고려하여 모의하도록 구성하였다. 하도 추적은 Muskingum 방법을 이용하였다. 연구 대상지로 이동저수지 유역을 선정하여 기상, 지형, 수문, 그리고 영농 자료를 수집하여 모형의 입력 자료를 구축하였다. 모형의 평가를 위한 통계적 지표는 Nash-Sutcliffe efficiency (NSE), root mean square error-observations standard deviation ratio (RSR), 그리고 percent bias (PBIAS)를 이용하였다. 보정 및 검정 결과 구성된 모형의 모의 결과는 실측치의 경향을 잘 반영하는 것으로 나타났다. 본 연구 결과는 우리나라 농촌유역 물순환에 대한 이해를 넓히며, 저수지 하류유역 유량 해석을 위한 기초자료로 이용될 수 있을 것으로 사료된다.

  • PDF

Regional Frequency Analysis using the Artificial Neural Network Method - the Han River Basin (인공신경망 군집분석을 이용한 지역빈도해석에 관한 연구 - 한강유역을 중심으로)

  • Ahn, Hyunjun;Kim, Sunghun;Shin, Hongjoon;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.300-300
    • /
    • 2016
  • 지점빈도해석은 해당 지점에서 기록된 수문자료를 바탕으로 확률론적 방법을 이용하여 해당 지역의 수문학적 현상을 해석하는 방법이다. 최근 이상 기후현상을 통해 극치 사상이 발생하고 있다. 이러한 극치 사상은 지점빈도해석을 이용하여 확률수문량을 추정하는데 많은 영향을 미친다. 특히 해당 지점의 표본 크기가 작을수록 이러한 영향은 좀 더 크게 반영 될 수 있다. 반면 지역빈도해석은 지점의 표본 수가 적거나 수문자료의 수집이 불가능한 미계측지점인 경우, 해당 지점과 수문학적으로 동질하다고 여겨지는 주변 지점들의 자료를 확보하여 확률수문량을 추정함으로써 상대적으로 지점빈도해석 보다 roubst한 추정값을 얻을 수 있다. 따라서 최근 확률수문량 산정 기법으로 지역빈도해석 방법에 관한 관심이 높아지고 있는 실정이다. 지역구분은 지역빈도해석이 지점빈도해석과 구분 될 수 있는 큰 특징이고 지역구분 결과 따라 지역의 표본 크기가 결정되기 때문에 수문학적으로 동질한 지역을 나누는 방법은 매우 중요하다고 볼 수 있다. 본 연구에서는 한강유역을 대상으로 인공신경망을 이용한 군집분석을 수행하고 구분된 지역을 이용하여 지역빈도 해석을 수행하였다.

  • PDF

A Study on the Regional Frequency Analysis Using the Artificial Neural Network Method - the Nakdong River Basin (인공신경망 군집분석을 이용한 지역빈도해석에 관한 연구 - 낙동강 유역을 중심으로)

  • Ahn, Hyunjun;Kim, Sunghun;Jung, Jinseok;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.404-404
    • /
    • 2017
  • 이상기후현상으로 인해 극치 수문 사상들이 빈번히 발생함에 따라 상대적으로 높은 재현기간에 해당하는 극치 수문 사상해석에 대한 관심이 높아지고 있다. 그러나 우리나라의 경우 이러한 극치 수문 사상을 추정하기 위한 표본의 수가 부족한 실정이다. 지역빈도해석은 지점의 표본 수가 적거나 수문자료의 수집이 불가능한 미계측지점인 경우, 해당 지점과 수문학적으로 동질하다고 여겨지는 주변 지점들의 자료를 확보하여 확률수문량을 추정함으로써 상대적으로 지점빈도해석 보다 roubst한 추정값을 얻을 수 있다는 장점을 가지고 있다. 따라서 최근 확률수문량 산정 기법으로 지역빈도해석 방법에 관한 관심이 높아지고 있다. 지역구분은 지역빈도해석이 지점빈도해석과 구분될 수 있는 큰 특징이고 지역구분 결과 따라 지역의 표본 크기가 결정되기 때문에 수문학적으로 동질한 지역을 나누는 방법은 매우 중요하다고 볼 수 있다. 인공신경망은 인간의 뇌가 학습하는 방식을 모사한 통계적 모델링 기법이다. 즉, 인간의 뇌가 일정한 반복 학습을 통해 어떠한 문제의 해법을 추론하거나 예측, 또는 패턴을 인식하는 일련의 과정을 알고리즘화 하여 목적함수의 해를 찾는 방식이다. 특히, 주어진 자료들로 부터 특징을 추출하고 그 특징을 학습하여 전체 자료의 분류나 군집화를 이루는데 널리 이용되고 있다. 본 연구에서는 낙동강유역을 대상으로 인공신경망을 이용한 군집분석을 수행하고 구분된 지역을 이용하여 지역빈도해석을 수행하였다.

  • PDF

Application of a support vector machine for prediction of piping and internal stability of soils

  • Xue, Xinhua
    • Geomechanics and Engineering
    • /
    • v.18 no.5
    • /
    • pp.493-502
    • /
    • 2019
  • Internal stability is an important safety issue for levees, embankments, and other earthen structures. Since a large part of the world's population lives near oceans, lakes and rivers, floods resulting from breaching of dams can lead to devastating disasters with tremendous loss of life and property, especially in densely populated areas. There are some main factors that affect the internal stability of dams, levees and other earthen structures, such as the erodibility of the soil, the water velocity inside the soil mass and the geometry of the earthen structure, etc. Thus, the mechanism of internal erosion and stability of soils is very complicated and it is vital to investigate the assessment methods of internal stability of soils in embankment dams and their foundations. This paper presents an improved support vector machine (SVM) model to predict the internal stability of soils. The grid search algorithm (GSA) is employed to find the optimal parameters of SVM firstly, and then the cross - validation (CV) method is employed to estimate the classification accuracy of the GSA-SVM model. Two examples of internal stability of soils are presented to validate the predictive capability of the proposed GSA-SVM model. In addition to verify the effectiveness of the proposed GSA-SVM model, the predictions from the proposed GSA-SVM model were compared with those from the traditional back propagation neural network (BPNN) model. The results showed that the proposed GSA-SVM model is a feasible and efficient tool for assessing the internal stability of soils with high accuracy.

Prediction of short-term algal bloom using the M5P model-tree and extreme learning machine

  • Yi, Hye-Suk;Lee, Bomi;Park, Sangyoung;Kwak, Keun-Chang;An, Kwang-Guk
    • Environmental Engineering Research
    • /
    • v.24 no.3
    • /
    • pp.404-411
    • /
    • 2019
  • In this study, we designed a data-driven model to predict chlorophyll-a using M5P model tree and extreme learning machine (ELM). The Juksan weir in the Youngsan River has high chlorophyll-a, which is the primary indicator of algal bloom every year. Short-term algal bloom prediction is important for environmental management and ecological assessment. Two models were developed and evaluated for short-term algal bloom prediction. M5P is a classification and regression-analysis-based method, and ELM is a feed-forward neural network with fast learning using the least square estimate for regression. The dataset used in this study includes water temperature, rainfall, solar radiation, total nitrogen, total phosphorus, N/P ratio, and chlorophyll-a, which were collected on a daily basis from January 2013 to December 2016. The M5P model showed that the prediction model after one day had the highest performance power and dropped off rapidly starting with predictions after three days. Comparing the performance power of the ELM model with the M5P model, it was found that the performance power of the 1-7 d chlorophyll-a prediction model was higher. Moreover, in a period of rapidly increasing algal blooms, the ELM model showed higher accuracy than the M5P model.

A Study on Development of Water Quality Prediction by Artificial neural network in Watershed of Nam River Using Probability Forecast (확률예보를 이용한 남강유역에서의 수질예측 ANN모형 개발 연구)

  • Jung, Woo Suk;Kim, Young Do;Kang, Boo Sik;Kim, Sung Eun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.26-26
    • /
    • 2017
  • 우리나라는 하천 및 호수 등 지표수에 대한 수자원 의존도가 매우 높다. 지표수는 태양광에 노출되어 있고, 기온의 영향을 직접 받기 때문에 기후변화에 대해 매우 민감한 수체이다. 기후변화로 인한 이상 저온, 이상 고온, 홍수, 가뭄 등의 자연 현상은 하천, 호수의 물리화학적 및 생태학적 특성을 변화(교란)시키고 있다. 이러한 기상현상에 변동되는 수질특성을 고려하여 기상청 확률기상예보를 구축된 인공신경망 예측모형의 입력인자로 적용하여 수질예보시스템을 개발하고자 하였다. 모형구축은 실제 일어난 기상관측자료와 요인분석을 통해 분류한 수질인자를 반영하여 단위유역별 수질예측을 위한 ANN학습을 실시하였다. 각 단위유역마다 기상요인의 공간적 세밀화 적용을 위해 각각 남강A, 남강B는 산청기상대, 남강C, 남강D는 진주기상대, 남강E는 의령기상대 자료를 이용하였으며, 수질항목은 DO, BOD, COD, TOC, T-P, SS 총 6개로 단위유역 5개에서 총 30개 예측모형 구축을 위한 자료를 수집하였다. 학습된 인공신경망 예측모형에 기상청 확률예보 값을 입력인자로 사용하여 모형평가를 실시하였다. 5개 단위유역 중 상대적으로 유역관리의 시급성을 고려하여 남강댐 하류 단위유역인 남강D, 남강E 인공신경망 모형의 입력자료로 적용하여 평가하였다.

  • PDF

Groundwater Level Prediction using ANFIS Algorithm (딥러닝을 이용한 하천 유량 예측 알고리즘)

  • Bak, Gwi-Man;Oh, Se-Rang;Park, Geun-Ho;Bae, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.6
    • /
    • pp.1239-1248
    • /
    • 2021
  • In this paper, we present FDNN algorithm to perform prediction based on academic understanding. In order to apply prediction based on academic understanding rather than data-dependent prediction to deep learning, we constructed algorithm based on mathematical and hydrology. We construct a model that predicts flow rate of a river as an input of precipitation, and measure the model's performance through K-fold cross validation.

Optimize rainfall prediction utilize multivariate time series, seasonal adjustment and Stacked Long short term memory

  • Nguyen, Thi Huong;Kwon, Yoon Jeong;Yoo, Je-Ho;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.373-373
    • /
    • 2021
  • Rainfall forecasting is an important issue that is applied in many areas, such as agriculture, flood warning, and water resources management. In this context, this study proposed a statistical and machine learning-based forecasting model for monthly rainfall. The Bayesian Gaussian process was chosen to optimize the hyperparameters of the Stacked Long Short-term memory (SLSTM) model. The proposed SLSTM model was applied for predicting monthly precipitation of Seoul station, South Korea. Data were retrieved from the Korea Meteorological Administration (KMA) in the period between 1960 and 2019. Four schemes were examined in this study: (i) prediction with only rainfall; (ii) with deseasonalized rainfall; (iii) with rainfall and minimum temperature; (iv) with deseasonalized rainfall and minimum temperature. The error of predicted rainfall based on the root mean squared error (RMSE), 16-17 mm, is relatively small compared with the average monthly rainfall at Seoul station is 117mm. The results showed scheme (iv) gives the best prediction result. Therefore, this approach is more straightforward than the hydrological and hydraulic models, which request much more input data. The result indicated that a deep learning network could be applied successfully in the hydrology field. Overall, the proposed method is promising, given a good solution for rainfall prediction.

  • PDF