• Title/Summary/Keyword: Risk-based design

Search Result 1,183, Processing Time 0.022 seconds

Development of Web-based Design Review System for Reliability and Safety Knowledge Management

  • Otsuka, Yuichi;Yukawa, Takashi;Mutoh, Yoshiharu
    • International Journal of Safety
    • /
    • v.9 no.2
    • /
    • pp.22-28
    • /
    • 2010
  • This paper describes a web-based design review system as a knowledge management system relating reliability and safety system design. Since people's consciousness for safety and security become sensitive and increases the need of establishing a proactive prevention method for internal failures and relating risks in products. It also means that prevailing tacit knowledge in retired workers, in order to transform them to be easily used to support new system development, become more important. When considering safety and reliability design, at least two data sheet are necessary; Failure Modes and Effects Analyses (FMEA) and Risk Assessment (RA). These two data are practically made separately. However, it includes the concerns that a risk by failures during long-term use may not be noticed. To overcome this insufficiency, a support tool for integrating reliability evaluation and risk assessment data simultaneously is expected to be revealed. The authors have then developed a web-based design review system for reliability and safety system design. The system include various profitable functions; making FMEA and RA sheet, retrieving past data sheet for engineering change management and new product development and web-based discussion to increase the efficiency of discussion. The system is applied to one practical development works in order to demonstrate its effectiveness that is to be made clear by interviewing user's qualitative comment.

Towards New Generation of Seismic Design Methodologies for Performance-based Design (성능기초설계를 위한 차세대 내진설계의 방향)

  • 홍성걸;김남희;장승필
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.276-283
    • /
    • 2001
  • Performance-based design concepts require the next generation of codes. To implement the main concepts several design methodologies have been proposed. This paper reviews the framework of Korea Seismic Code and shows necessary modification for adoption of appropriate design methods. The selection of design earthquake levels with the introduction of risk factor is discussed for proper risk levels for all earthquake hazards. Displacement-based design, energy-based design, comprehensive design, and force-strength design methods are reviewed as one of possible next generation design methods. This paper proposes the direction of reconstruction for design earthquake levels with performance matrix, introduction of new design methods, and emphasis on non- structural components.

  • PDF

Applying Fire Risk Analysis to Develop Fire-safe Modular Walls: Guidance to Material Selection, Design Approach and Construction Method

  • Lim, Seokho;Chung, Joonsoo;Kim, Mihyun Esther
    • Architectural research
    • /
    • v.24 no.2
    • /
    • pp.21-27
    • /
    • 2022
  • For the past decade, South Korea had experienced catastrophic building fires, which resulted in consider-ably high number of casualties. This motivated research to develop fire-safe wall assemblies. In this study Fire Risk Analysis (FRA) is conducted as part of the project designing phase to ensure fire safety of the final product. Traditional approach was to consider fire performance at the end of the designing stage, when PASS/FAIL fire test results are required to be submitted to the Authority Having Jurisdiction (AHJ). By applying a fire risk analysis to guide the designing phase, overall fire safety of a wall assembly can be achieved more systematically as conducting FRA allows designers to clearly identify elements that are more vulnerable to fire and simply replace them with other practical options. Severity of fire risk is determined by considering the fire hazards of a wall assembly such as the exterior layer, insulation, vertical connectivity, and external ignition sources (e.g., photovoltaic panels). Frequency of fire risk is assessed based on the factors affecting fire likelihood, which are air cavity and fire-stopping applied in the design, and random design changes occurring during on-site construction. Fire risk matrix is proposed based on these fire risk factors and efforts to reduce the fire risk level associated with the wall assembly are given by systematically assessing the fire risk factors identified from fire risk analysis. Current study demonstrates how fire risk analysis can be applied to develop fire-safe walls by reducing the relevant fire risks- both severity and frequency.

Design and Implementation of a Rule-based Risk Classification Algorithm for Risk-based Inspection (RBI) of Imported Goods (수입 화물의 위험 기반 검사(RBI)를 위한 규칙 기반 위험 분류 알고리즘의 설계 및 구현)

  • Cha Jooho;Heo Hoon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.19 no.3
    • /
    • pp.129-136
    • /
    • 2023
  • In this paper, we describe a rule-based risk classification algorithm to perform Risk-based Inspection (RBI) on imported goods at customs. The RBI system is a method to automatically select which cargos have to be inspected and manage potential risks in boarder. In this study, we designed a rule-based risk classification algorithm for RBI solutions and implemented them using the Svelte web application framework. The risk classification algorithm proposed in this paper uses different indicative risk factors such as HS code, country of origin, importer's reliability, trade relationships, and logistics routes to classify cargos into Green, Yellow, and Red channels. To achieve this, we assigned risk categories to each risk factor and randomly generated risk scores within a specific range for each risk category. This system is expected to contribute to the increased efficiency of customs operations and protect public safety by minimizing the risk of imported hazardous materials.

Why Do Mobile Device Users Take a Risky Behavior?: Focusing on Model of the Determinants of Risk Behavior (모바일 기기 사용자는 왜 정보보호에 위험한 행동을 하는가? : 위험행동 결정요인 모델을 중심으로)

  • Kim, Jongki;Kim, Jiyun
    • The Journal of Information Systems
    • /
    • v.28 no.2
    • /
    • pp.129-152
    • /
    • 2019
  • Purpose The purpose of this study is to empirically identify the risky behavior of mobile device users using the Internet of Things on a situational perspective. Design/methodology/approach This study made a design of the research model based on model of the determinants of risk behavior. Data were collected through a survey including hypothetical scenario. SmartPLS 2.0 was used for the structural model analysis and t-test was conducted to compare the between normal and situational behavior. Findings The results were as follows. First, the central roles of risk propriety and risk perception were verified empirically. Second, we identified the role of locus of control as a new factor of impact on risky behavior. Third, mobile risk propensity has been shown to increase risk perception. Fouth, it has been shown that risk perception does not directly affect risky behavior and reduce the relationship between mobile risk propensity and risk behavior. According to the empirical analysis result, Determinants of risk behavior for mobile users were identified based on a theoretical framework. And it raised the need to pay attention to the impact of locus of control on risk behavior in the IS security field. It provided direction to the approach to risky behavior of mobile device users. In addition, this study confirmed that there was a possibility of taking risky behavior in the actual decision-making.

Risk-based Design of On-board Facility for Lifting System Field Test of Deep-sea Mining System (심해저 광물자원 양광시스템 실증 시험을 위한 위험도 기반 선상 설비 설계)

  • Cho, Su-gil;Park, Sanghyun;Oh, Jaewon;Min, Cheonhong;Kim, Seongsoon;Kim, Hyung-Woo;Yeu, Tae Kyung;Jung, Jung Yeul;Bae, Jaeil;Hong, Sup
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.6
    • /
    • pp.526-534
    • /
    • 2016
  • This study had the goal of designing onboard structures for a pre-pilot mining test (PPMT), which is required for the commercialization of the deep-sea mining industry. This PPMT is planned to validate the performance of a hydraulic lifting system and verify the concept of operating through a moon-pool in the east sea, Korea. All of the onboard equipment and facility were designed by KRISO. Because the test was performed at the first development, it is difficult to determine what risk will occur in the facility. Therefore, risk-based design is required in the facility for the PPMT, which includes the facility layout, failure mode and effect analysis (FMEA), and risk reduction plan. All of the expected performances of the lifting system itself and the onboard facilities were qualitatively validated using the risk-based design.

Life Cycle Cost Analysis for Design of Buildings based on the Lifetime Risk (생애 위험도기반 건축물의 설계단계 생애주기비용 분석 방법)

  • Baek, Byung-Hoon;Cho, Choong-Yeon
    • Korean Journal of Construction Engineering and Management
    • /
    • v.15 no.3
    • /
    • pp.113-119
    • /
    • 2014
  • Recently, the demand on the practical application of life-cycle cost effectiveness for design and rehabilitation of structure is rapidly growing unprecedently in engineering practice. Accordingly, in the 21st century, it is almost obvious that life-cycle cost together with value engineering will become a new paradigm for all engineering decision problems in practice. However, in spite of impressive progress in the researches on the LCC, the most researches have only focused on the Deterministic or Probabilistic LCC analysis approach (Level-1 LCC Model) at design stage. Thus, the goal of this study is to develop a practical and realistic methodology for the Lifetime risk based Life-Cycle Cost (LCC)-effective optimum decision-making at design stage.

Risk Based Accidental Limit State Evaluation on Explosion Accident at Shale Shaker Room of Semi-Submersible Drilling Rig (반잠수식 시추선의 Shale Shaker Room 폭발 사고에 대한 위험도 기반 사고한계상태 평가)

  • Yoo, Seung-Jae;Kim, Han-Byul;Park, Jin-Hoo;Won, Sun-Il;Choi, Byung-Ki
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2015.09a
    • /
    • pp.69-73
    • /
    • 2015
  • An evaluation of the accidental limit state (ALS) for design of a semi-submersible drilling rig is one of the essential design requirements as well as ultimate limit state (ULS) and fatigue limit state (FLS). This paper describes the ALS evaluation on the explosion accident at shale shaker room of semi-submersible drilling rig. There are three steps for the ALS evaluation such as structural analysis at concept design, risk based safety design and structural analysis at detailed design. For the ALS evaluation at concept design, conceptual explosion overpressure from the Rule guided by the classification society was used in the structural analysis that was carried out using LS-DYNA. To set up the design accidental load (DAL), explosion analysis was carried out using FLACS taking safety barriers into consideration. Then, the structural analysis was carried out applying DAL for the ALS evaluation at detailed design. Through the ALS evaluation on the explosion at shale shaker room, the importance of the risk based safety design was described.

  • PDF

A Study on the Key Performance Factors of Passenger Airbag and Injury Risk Prediction Technique Development (동승석 에어백 핵심 성능 인자 및 상해위험도 예측 기법 개발에 대한 연구)

  • Park, Dongkyou
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.5
    • /
    • pp.130-135
    • /
    • 2013
  • Until now, passenger airbag design is based on the referred car design and many repetitive crash tests have been done to meet the crash performance. In this paper, it was suggested a new design process of passenger airbag. First, key performance factors were determined by analyzing the injury risk effectiveness of each performance factor. And it was made a relationship between injury risk and performance factor by using the response surface model. By using this one, it can be predicted the injury risk of head and neck. Predicted injury risk of optimal design was obtained through this injury risk prediction model and it was verified by FE analysis result within 18% error of head and 9% error of neck. It was shown that a target crash performance can be met by controlling the key performance factors only.

Predictive Modeling Design for Fall Risk of an Inpatient based on Bed Posture (침대 자세 기반 입원 환자의 낙상 위험 예측 모델 설계)

  • Kim, Seung-Hee;Lee, Seung-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.2
    • /
    • pp.51-62
    • /
    • 2022
  • This study suggests a design of predictive modeling for a hospital fall risk based on inpatients' posture. Inpatient's profile, medical history, and body measurement data along with basic information about a bed they use, were used to predict a fall risk and suggest an algorithm to determine the level of risk. Fall risk prediction is largely divided into two parts: a real-time fall risk evaluation and a qualitative fall risk exposure assessment, which is mostly based on the inpatient's profile. The former is carried out by recognizing an inpatient's posture in bed and extracting rule-based information to measure fall risk while the latter is conducted by medical staff who examines an inpatient's health status related to hospital fall risk and assesses the level of risk exposure. The inpatient fall risk is determined using a sigmoid function with recognized inpatient posture information, body measurement data and qualitative risk assessment results combined. The procedure and prediction model suggested in this study is expected to significantly contribute to tailored services for inpatients and help ensure hospital fall prevention and inpatient safety.