• Title/Summary/Keyword: Risk-based assessment

Search Result 2,037, Processing Time 0.035 seconds

Fragility-based rapid earthquake loss assessment of precast RC buildings in the Marmara region

  • Ali Yesilyurt;Oguzhan Cetindemir;Seyhan O. Akcan;Abdullah C. Zulfikar
    • Structural Engineering and Mechanics
    • /
    • v.88 no.1
    • /
    • pp.13-23
    • /
    • 2023
  • Seismic risk assessment studies are one of the most crucial instruments for mitigating casualties and economic losses. This work utilizes fragility curves to evaluate the seismic risk of single-story precast buildings, which are generally favored in Marmara's organized industrial zones. First, the precast building stock in the region has been categorized into nine sub-classes. Then, seven locations in the Marmara region with a high concentration of industrial activities are considered. Probabilistic seismic hazard assessments were conducted for both the soil-dependent and soil-independent scenarios. Subsequently, damage analysis was performed based on the structural capacity and mean fragility curves. Considering four different consequence models, 630 sub-class-specific loss curves for buildings were obtained. In the current study, it has been determined that the consequence model has a significant impact on the loss curves, hence, average loss curves were computed for each case investigated. In light of the acquired results, it was found that the loss ratio values obtained at different locations within the same region show significant variation. In addition, it was observed that the structural damage states change from serviceable to repairable or repairable to unrepairable. Within the scope of the study, 126 average loss functions were presented that could be easily used by non-experts in earthquake engineering, regardless of structural analysis. These functions, which offer loss ratios for varying hazard levels, are valuable outputs that allow preliminary risk assessment in the region and yield sensible outcomes for insurance activities.

Risk analysis for sidetrack construction during subway tunnel operation (기존 지하철 터널 운영 중 대피선 건설 시공 리스크 분석)

  • Jun, Jonghun;Chung, Heeyoung;Koh, Sung-Yil;Yoon, Hee Taek;Yi, Na Hyun;Choi, Hangseok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.4
    • /
    • pp.401-417
    • /
    • 2020
  • As an increasing demand for rapid railway transportation, the construction of sidetrack is inevitable to operate local and express trains simultaneously. However, the current technologies for the sidetrack construction method require a long construction period by interrupting the operation of the existing subway line, as well as cause a huge economic loss. Thus, it is necessary to study the sidetrack construction method under the special situation that the subway is in operation and to analyze the risk of the existing tunnel enlargement process for the sidetrack construction. Therefore, in this paper, the Government Complex Gwacheon station on Subway Line 4 was considered as a target station for the virtual sidetrack construction and the optimal sidetrack construction plan was derived. Subsequently, the application of risk management process was carried out in the order of identifying risk, risk response planning, performing a risk analysis, risk monitoring and control for potential risk events during the construction of sidetrack under the subway operation. A total of eight potential risk events and risk mitigation methods were selected, and a risk assessment matrix was established using the five-step risk probability and impact level criteria to perform the risk assessment including residual risks. Based on the results of the risk assessment, the risk grade and the reduction effect of each risk mitigation method were confirmed.

Life Risk Assessment of Landslide Disaster in Jinbu Area Using Logistic Regression Model (로지스틱 회귀분석모델을 활용한 평창군 진부 지역의 산사태 재해의 인명 위험 평가)

  • Rahnuma, Bintae Rashid Urmi;Al, Mamun;Jang, Dong-Ho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.27 no.2
    • /
    • pp.65-80
    • /
    • 2020
  • This paper deals with risk assessment of life in a landslide-prone area by a GIS-based modeling method. Landslide susceptibility maps can provide a probability of landslide prone areas to mitigate or proper control this problems and to take any development plan and disaster management. A landslide inventory map of the study area was prepared based on past historical information and aerial photography analysis. A total of 550 landslides have been counted at the whole study area. The extracted landslides were randomly selected and divided into two different groups, 50% of the landslides were used for model calibration and the other were used for validation purpose. Eleven causative factors (continuous and thematic) such as slope, aspect, curvature, topographic wetness index, elevation, forest type, forest crown density, geology, land-use, soil drainage, and soil texture were used in hazard analysis. The correlation between landslides and these factors, pixels were divided into several classes and frequency ratio was also extracted. Eventually, a landslide susceptibility map was constructed using a logistic regression model based on entire events. Moreover, the landslide susceptibility map was plotted with a receiver operating characteristic (ROC) curve and calculated the area under the curve (AUC) and tried to extract a success rate curve. Based on the results, logistic regression produced an 85.18% accuracy, so we believed that the model was reliable and acceptable for the landslide susceptibility analysis on the study area. In addition, for risk assessment, vulnerability scale were added for social thematic data layer. The study area predictive landslide affected pixels 2,000 and 5,000 were also calculated for making a probability table. In final calculation, the 2,000 predictive landslide affected pixels were assumed to run. The total population causalities were estimated as 7.75 person that was relatively close to the actual number published in Korean Annual Disaster Report, 2006.

Risk-Based Allocation of Demand Response Resources Using Conditional Value-at Risk (CVaR) Assessment

  • Kim, Ji-Hui;Lee, Jaehee;Joo, Sung-Kwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.789-795
    • /
    • 2014
  • In a demand response (DR) market run by independent system operators (ISOs), load aggregators are important market participants who aggregate small retail customers through various DR programs. A load aggregator can minimize the allocation cost by efficiently allocating its demand response resources (DRRs) considering retail customers' characteristics. However, the uncertain response behaviors of retail customers can influence the allocation strategy of its DRRs, increasing the economic risk of DRR allocation. This paper presents a risk-based DRR allocation method for the load aggregator that takes into account not only the physical characteristics of retail customers but also the risk due to the associated response uncertainties. In the paper, a conditional value-at-risk (CVaR) is applied to deal with the risk due to response uncertainties. Numerical results are presented to illustrate the effectiveness of the proposed method.

A GIS-based Traffic Accident Analysis on Highways using Alignment Related Risk Indices (고속도로 선형조건과 GIS 기반 교통사고 위험도지수 분석 (호남.영동.중부고속도로를 중심으로))

  • 강승림;박창호
    • Journal of Korean Society of Transportation
    • /
    • v.21 no.1
    • /
    • pp.21-40
    • /
    • 2003
  • A traffic accident analysis method was developed and tested based on the highway alignment risk indices using geographic information systems(GIS). Impacts of the highway alignment on traffic accidents have been identified by examining accidents occurred on different alignment conditions and by investigating traffic accident risk indices(TARI). Evaluative criteria are suggested using geometric design elements as an independent variable. Traffic accident rates were forecasted more realistically and objectively by considering the interaction between highway alignment factors and the design consistency. And traffic accident risk indices and risk ratings were suggested based on model estimation results and accident data. Finally, forecasting traffic accident rates, evaluating the level of risk and then visualizing information graphically were combined into one system called risk assessment system by means of GIS. This risk assessment system is expected to play a major role in designing four-lane highways and developing remedies for highway sections susceptible to traffic accidents.

Human Risk Assessment of Arsenic and Heavy Metal Contamination and Estimation of Remediation Concentration within Abandoned Metal Mine Area (폐금속 광산지역 비소 및 중금속 오염에 대한 인체위해성평가 및 복원농도 설정)

  • Lee, Sang-Woo;Kim, Jeong-Jin;Park, Mi Jeong;Lee, Sang-Hwan;Kim, Soon-Oh
    • Journal of the Mineralogical Society of Korea
    • /
    • v.28 no.4
    • /
    • pp.309-323
    • /
    • 2015
  • This study was initiated to propose the method for human risk assessment suitable to metal mine area. Using a variety of exposure parameters extracted from the investigation of abandoned metal mines, the proposed method was applied to assess the risk of As and heavy metal contamination for inhabitants (male and female adults and child) within an abandoned mine area. Based on the results of risk assessment, in addition, target remediation concentrations of each media (soil, groundwater, and surface water) were estimated. The results indicate that total carcinogenic risk (TCR) and hazard index (HI) representing carcinogenic and non-carcinogenic risks, respectively, were calculated to exceed the tolerable levels (1.00E-6 and 1) with regard to two exposure pathways (groundwater and crop intakes) and As. Thus, the human risk of study area was evaluated to be significant. Based on the target risk (TR) for carcinogens, the remediation concentrations of soil were computed to be 6.83~6.85 mg/kg and 18.41~18.46 mg/kg for As and Pb, respectively. In terms of target hazard index (THI) for non-carcinogens, the remediation concentrations of soil were calculated to be 17.38 mg/kg for Cu and 9.13 mg/kg for As.

Analysis of Urban Infrastructure Risk Areas to Flooding using Neural Network in Seoul (인공신경망을 활용한 서울시 도시기반시설 침수위험지역 분석)

  • Kang, Jung Eun;Lee, Moung-Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.4
    • /
    • pp.997-1006
    • /
    • 2015
  • This study analyzed urban infrastructure risk to flooding based on the possibility map of flooding calculated by neural network model focusing on Seoul. This study found that Gangnam-gu, Songpa-gu, Seocho-gu and Seodaemun-gu contained relatively large high-risk areas to flooding. Over $4.17km^2$ of transportation facilities were located in high-risk area to flooding and Gangnam-gu included over $0.85km^2$ of infrastructures exposed to high inundation risk. This study is meaningful in that it first applied the neural network modeling to flooding risk assesment and results of risk assessment can be incorporated into various planning process.

A Survey on the Risk Factors Analysis and Evaluation for the types of VDT Work

  • Kim, Day Sung
    • Journal of the Ergonomics Society of Korea
    • /
    • v.32 no.5
    • /
    • pp.469-474
    • /
    • 2013
  • Objective: The purpose of this study was to analyze the risk factors of MSDs for the types of office work. Background: Physical risk factors of VDT(Video Display Terminal) associated with shoulder and neck musculoskeletal disorders(MSDs) include static work postures and workstation status. Method: In this study, office work was divided into data search, data entry and design work(drawings, etc.), and then we were surveyed 7 major work places which was included these works. We recorded working postures and obtained still images, depending on the types of office work. Then, RULA(Rapid Upper Limb Assessment) and ROSA(Rapid Office Strain Assessment) were used to analysis the risk factors. Results: The results of RULA showed that design work was under risk levels and required change, but ROSA showed that data entry and design work were high risk. The RULA is to evaluate the level of risk factors based on the working posture; on the other hand, the ROSA is to consider the use of peripheral, same as chair, keyboard/mouse, monitor and computer workstations. Conclusion: Conclusions of this study, the office work is necessary to identify the risk factors caused by the use of peripheral, as well as working posture.

A study on the development and applicability of fire risk assessment method for small road tunnels passing only small cars (소형차 전용 도로터널의 화재 위험도 평가기법개발 및 적용성에 관한 연구)

  • Ryu, Ji-Oh;Choi, Pan-Gyu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.6
    • /
    • pp.917-930
    • /
    • 2018
  • A quantitative risk assessment method for quantitatively evaluating the fire risk in designing a road tunnel disaster prevention facilities has been introduced to evaluate the appropriateness of a disaster prevention facility in a large tunnel through which all vehicle types pass. However, since the quantitative risk assessment method of the developed can be applied only to the large sectional area tunnels (large tunnels), it is necessary to develop a quantitative risk assessment method for road tunnels passing only small cars which has recently been constructed or planned. In this study, fire accidents scenarios and quantitative risk assesment method for small road tunnels through small cars only which is based on the methods for existing road tunnels (large tunnels). And the risk according to the distance between cross passage is evaluated. As a result, in order to satisfy the societal risk assessment criteria, the distance of the appropriate distance between cross passages was estimated to be 200 m, and the effect of the ventilation system of the large port exhaust ventilation system was quantitatively analyzed by comparing the longitudinal ventilation system.

Quantitative and Semiquantitative Health Risk Assessment of Occupational Exposure to Styrene in a Petrochemical Industry

  • Moshiran, Vahid Ahmadi;Karimi, Ali;Golbabaei, Farideh;Yarandi, Mohsen Sadeghi;Sajedian, Ali Asghar;Koozekonan, Aysa Ghasemi
    • Safety and Health at Work
    • /
    • v.12 no.3
    • /
    • pp.396-402
    • /
    • 2021
  • Background: Styrene is one of the aromatic compounds used in acetonitrile-butadiene-styrene (ABS) producing petrochemicals, which has an impact on health of workers. Therefore, this study aimed to investigate the health risks of styrene emitted from the petrochemical industry in Iran. Methods: Air samples were collected based on NIOSH 1501 method. The samples were analyzed by the Varian-cp3800 gas chromatograph. Finally, risk levels of styrene's health effects on employees were assessed by the quantitative method of the U.S. Environmental Protection Agency (U.S. EPA) and the semiquantitative way by the Singapore Occupational Safety and Health Association. Results: Based on the results, the employees had the highest average exposure to styrene vapors (4.06 × 10-1mg.(kg - day)-1) in the polybutadiene latex (PBL) unit. Therefore, the most top predictors of cancer and non-cancer risk were 2.3×10-4 and 7.26 × 10-1, respectively. Given that the lowest average exposure (1.5 × 10-2mg.(kg - day)-1) was in the dryer unit, the prediction showed a moderate risk of cancer (0.8 × 10-6) and non-cancer (2.3 × 10-3) for the employees. The EPA method also predicted that there would be a definite cancer risk in 16% and a probable risk in 76% of exposures. However, according to the semiquantitative approach, the rate of risk was at the "low" level for all staff. The results showed that there was a significant difference (p < 0.05) between the units in exposure and health risk of styrene (p < 0.05). Conclusion: Given the high risk of styrene's health effects, appropriate control measures are required to reduce the exposure level.