• Title/Summary/Keyword: Risk-Based Design

Search Result 1,160, Processing Time 0.028 seconds

Review of Qualitative Approaches for the Construction Industry: Designing a Risk Management Toolbox

  • Zalk, David M.;Spee, Ton;Gillen, Matt;Lentz, Thomas J.;Garrod, Andrew;Evans, Paul;Swuste, Paul
    • Safety and Health at Work
    • /
    • v.2 no.2
    • /
    • pp.105-121
    • /
    • 2011
  • Objectives: This paper presents the framework and protocol design for a construction industry risk management toolbox. The construction industry needs a comprehensive, systematic approach to assess and control occupational risks. These risks span several professional health and safety disciplines, emphasized by multiple international occupational research agenda projects including: falls, electrocution, noise, silica, welding fumes, and musculoskeletal disorders. Yet, the International Social Security Association says, "whereas progress has been made in safety and health, the construction industry is still a high risk sector." Methods: Small- and medium-sized enterprises (SMEs) employ about 80% of the world's construction workers. In recent years a strategy for qualitative occupational risk management, known as Control Banding (CB) has gained international attention as a simplified approach for reducing work-related risks. CB groups hazards into stratified risk 'bands', identifying commensurate controls to reduce the level of risk and promote worker health and safety. We review these qualitative solutions-based approaches and identify strengths and weaknesses toward designing a simplified CB 'toolbox' approach for use by SMEs in construction trades. Results: This toolbox design proposal includes international input on multidisciplinary approaches for performing a qualitative risk assessment determining a risk 'band' for a given project. Risk bands are used to identify the appropriate level of training to oversee construction work, leading to commensurate and appropriate control methods to perform the work safely. Conclusion: The Construction Toolbox presents a review-generated format to harness multiple solutions-based national programs and publications for controlling construction-related risks with simplified approaches across the occupational safety, health and hygiene professions.

Weld Quality Monitoring System Development Applying A design Optimization Approach Collaborating QFD and Risk Management Methods (품질 기능 전개법과 위험 부담 관리법을 조합한 설계 최적화 기법의 용접 품질 감시 시스템 개발 응용)

  • Son, Joong-Soo;Park, Young-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.2
    • /
    • pp.207-216
    • /
    • 2000
  • This paper introduces an effective system design method to develop a customer oriented product using a design optimization process and to select a set of critical design paramenters,. The process results in the development of a successful product satisfying customer needs and reducing development risk. The proposed scheme adopted a five step QFD(Quality Function Deployment) in order to extract design parameters from customer needs and evaluated their priority using risk factors for extracted design parameters. In this process we determine critical design parameters and allocate them to subsystem designers. Subsequently design engineers develop and test the product based on these parameters. These design parameters capture the characteristics of customer needs in terms of performance cost and schedule in the process of QFD, The subsequent risk management task ensures the minimum risk approach in the presence of design parameter uncertainty. An application of this approach was demonstrated in the development of weld quality monitoring system. Dominant design parameters affect linearity characteristics of weld defect feature vectors. Therefore it simplifies the algorithm for adopting pattern classification of feature vectors and improves the accuracy of recognition rate of weld defect and the real time response of the defect detection in the performance. Additionally the development cost decreases by using DSP board for low speed because of reducing CPU's load adopting algorithm in classifying weld defects. It also reduces the cost by using the single sensor to measure weld defects. Furthermore the synergy effect derived from the critical design parameters improves the detection rate of weld defects by 15% when compared with the implementation using the non-critical design parameters. It also result in 30% saving in development cost./ The overall results are close to 95% customer level showing the effectiveness of the proposed development approach.

  • PDF

Suggestion for Collaboration-Based UI/UX Development Model through Risk Analysis

  • Cho, Seong-Hwan;Kim, Seung-Hee
    • Journal of Information Processing Systems
    • /
    • v.16 no.6
    • /
    • pp.1372-1390
    • /
    • 2020
  • An attractive user interface (UI) design with a clear user experience (UX) is the key for the success of applications. Therefore software development projects require very close collaboration between SI developers and front-end service developers. However, methodologies for software development only exist with inadequate development processes or work standards for collaboration. This survey derived 13 risk factors in developing UI/UX from 113 risk factors of IT projects through a questionnaire and factor analysis and proposed a collaboration-based UI/UX development model that can eliminate or mitigate six risks with high weights and reliability. To extract risk factors with high reliability, factor and reliability were analyzed to extract 13 major risks, and based on the expert opinions and the results of correlation analysis, UI/UX development stages were classified into planning, design, and implementation. The causal relationships between risks were verified through regression analysis. This study is the first to expertly analyze major risks based on collaboration in UI/UX development and derive a theoretical basis that can be used in project risk management. These findings are expected to provide a basis for research on development methodologies for higher levels of front-end services and to construct rational collaboration systems between SI practitioners and front-end service providers.

Risk based Value Index Evaluation Model for Modular Design Alternatives in Plant Construction Projects (플랜트 건설사업의 모듈러 설계대안별 RVI 평가 모델)

  • Kang, Hyun Wook
    • Korean Journal of Construction Engineering and Management
    • /
    • v.23 no.5
    • /
    • pp.98-107
    • /
    • 2022
  • The purpose of this study is to suggest a model for evaluation of a risk based value index for modular design alternatives in plant construction projects. Accordingly, 1) Setting the basic project cost and the scope to apply the module, 2) Evaluating the importance, easiness, and effectiveness index for Engineering, Procurement, Fabrication, transportation, and construction work, 3) Estimating the total project cost by analyzing the risk reserve Step, 4) Comparing the effectiveness index and total project cost for each modular design alternative, it was composed of the steps of deriving RVI. To verify such a model, Plan-A, which applied a module to one process, and Plan-B, which applied a module to three processes, were composed to evaluate RVI.

A Study on a Risk Assessment Method and Building Simulation for the Development of a Korean Integrated Disaster Evaluation Simulator (K-IDES) for High-rise Buildings

  • Kim, Tae-Young;Han, Gi-Sung;Kang, Boo-Seong;Lee, Kyung-Hoon
    • Architectural research
    • /
    • v.22 no.4
    • /
    • pp.105-112
    • /
    • 2020
  • The purpose of this study is to establish a method for assessing a building's risk against disaster, tentatively named the Korean integrated disaster evaluation simulator (K-IDES). Based on previous studies, FEMA's risk management series and FEMA IRVS are selected as case studies for developing a frame work of K-IDES, through the comparative analysis of domestic building design guides, codes, and special acts related to disasters, in order to develop a risk assessment methodology for quantitative results. The assessment method consists of a classification system and calculating risk, and a simulation applying the developed checklist in K-IDES to similar types of high-rise buildings will be conducted to validate its accuracy. The final goal is to systemize an integrated risk management in a high-rise building against disasters for the purpose of recognizing vulnerable areas from the beginning of the design process and reinforcing it from potential threats after construction.

A Study on the Quantitative Risk Analysis Using CFD for the Fuel Gas Supply System of Gas Fueled Ship (가스추진선박의 가스연료공급시스템에 대한 CFD를 이용한 정량적 위험도 해석에 관한 연구)

  • Kim, Kipyoung;Kim, Daeheon;Lee, Youngho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • LNG has significant advantages in regard to environmental aspects comparing with conventional fuel oil. In fact, it is estimated that NOx and SOx emission can be reduced by about 90% and 100%, respectively in case of using LNG as a fuel. LNG-fuelled ship has been considered to be the best option both from an environmental and an economic point of view. Along with these trends, some major shipyards and Classification Societies have started to carry out the risk-based system design for LNG-fuelled ship such as passenger ship, platform supply vessel and large container vessel etc. However, new conceptual gas fuelled ship has high risk level compared with vessel using traditional crude oil especially in view of gas explosion accident. Therefore safety area where installed fuel gas supply system is required risk based system design with special considerations. On this paper, the entire process necessary for the quantitative risk analysis was explained to meet the satisfactory safety level of gas fuelled ship.

A Survey on the Risk Factors Analysis and Evaluation for the types of VDT Work

  • Kim, Day Sung
    • Journal of the Ergonomics Society of Korea
    • /
    • v.32 no.5
    • /
    • pp.469-474
    • /
    • 2013
  • Objective: The purpose of this study was to analyze the risk factors of MSDs for the types of office work. Background: Physical risk factors of VDT(Video Display Terminal) associated with shoulder and neck musculoskeletal disorders(MSDs) include static work postures and workstation status. Method: In this study, office work was divided into data search, data entry and design work(drawings, etc.), and then we were surveyed 7 major work places which was included these works. We recorded working postures and obtained still images, depending on the types of office work. Then, RULA(Rapid Upper Limb Assessment) and ROSA(Rapid Office Strain Assessment) were used to analysis the risk factors. Results: The results of RULA showed that design work was under risk levels and required change, but ROSA showed that data entry and design work were high risk. The RULA is to evaluate the level of risk factors based on the working posture; on the other hand, the ROSA is to consider the use of peripheral, same as chair, keyboard/mouse, monitor and computer workstations. Conclusion: Conclusions of this study, the office work is necessary to identify the risk factors caused by the use of peripheral, as well as working posture.

Sampling Plans Based on Truncated Life Test for a Generalized Inverted Exponential Distribution

  • Singh, Sukhdev;Tripathi, Yogesh Mani;Jun, Chi-Hyuck
    • Industrial Engineering and Management Systems
    • /
    • v.14 no.2
    • /
    • pp.183-195
    • /
    • 2015
  • In this paper, we propose a two-stage group acceptance sampling plan for generalized inverted exponential distribution under truncated life test. Median life is considered as a quality parameter. Design parameters are obtained to ensure that true median life is longer than a given specified life at certain level of consumer's risk and producer's risk. We also explore situations under which design parameters based on median lifetime can be used for other percentile points. Tables and specific examples are reported to explain the proposed plans. Finally a real data set is analyzed to implement the plans in practical situations and some suggestions are given.

Study On the Design of Risk Management Web-Monitoring System using AANN (AANN을 이용한 웹-모니터링 시스템 설계에 관한 연구)

  • 김동회;이영삼;김성호
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.6
    • /
    • pp.545-550
    • /
    • 2004
  • Recent natural disasters like flooding and slope collapse have shown the need for natural risk management system, as they endanger directly public health and cause severe damages on the national economy. In order to improve the efficiency of risk management systems, this management system based on AANN(Auto-Associative Neural Network)is proposed in this paper. AANN can be effectively used for identification of abnormal data and data compression. The proposed AANN-based risk management system collects and stores measurement data from sensors and transmits them to remote server for web-monitoring. Generally, it is desirable to transmit the compressed data instead of raw data in normal state. However, if dangerous situation happens, rapid tramission of measurement data should be required. These requirements are easily satisfied by using AANN. In order to verify the feasibilities of the proposed system, The AANN-based risk management system is applied to slope collapse monitoring system.

Purchase Behavior and Risk Perception in Cosmetics Purchases at Online Shopping Malls (인터넷 쇼핑몰에서 화장품 구매시 위험지각에 따른 구매행동에 관한 연구)

  • Kim, Ju-Hee;Ha, Jong-Kyung
    • Korean Journal of Human Ecology
    • /
    • v.19 no.6
    • /
    • pp.1003-1012
    • /
    • 2010
  • This study analyzed purchase behavior according to the risk perceptions when customers buy Cosmetics at Internet Shopping Malls. Participants were 232 women in their 20s and 30s with more than one buying experience at an internet fashion shopping mall. Data were analyzed using factor analysis, Cronbach's analysis, cluster analysis, one-way ANOVA and a Duncan test. Results were as follows. Firstly, five factors of risk perception were identified: These were the payment risk, service risk, quality risk, price risk and experience risk. Secondly, customers of internet shopping malls could be categorized into three groups: A low risk perception group, a payment risk perception group and a high risk perception group. Factor analysis showed significant differences between these groups( p<.001). Thirdly, purchase behavior based on the purchase standards, purchase items, information searching were investigated according to the different groups of risk perception of internet shopping malls and results again significant differences between groups (p<.05, p<.001).