• Title/Summary/Keyword: Risk map

Search Result 428, Processing Time 0.025 seconds

A GIS-Based Mapping to Identify Locations at Risk for Highly Pathogenic Avian Influenza Virus Outbreak in Korea (지리정보시스템 기반의 고병원성 조류인플루엔자 발생 위험지도 구축)

  • Lee, Gyoungju;Pak, Son-Il
    • Journal of Veterinary Clinics
    • /
    • v.34 no.2
    • /
    • pp.146-151
    • /
    • 2017
  • Six major outbreaks of highly pathogenic avian influenza (HPAI) occurred from 2003 to 2016 in Korea. Epidemiological investigations of each outbreak revealed that migratory birds were the primary source of the HPAI virus. During the last five years, the geographic transmission pattern of domestic HPAI seems to have extended from local to nationwide; therefore, it is necessary to identify specific locations in which poultry farms are at elevated risk for HPAI outbreak to enable targeted surveillance and other mitigation strategies. Here, a geographical information system (GIS)-based analysis was used to identify geographic areas at high risk for future HPAI incidents in Korea based on historical outbreak data collected between December 2003 and April 2016. To accomplish this, seven criteria were used to identify areas at high-risk for HPAI occurrence. The first three criteria were based on defined spatial criteria buffering of 200 bird migration sites to some defined extents and the historical incidence of HPAI outbreaks at the buffering sites. The remaining criteria were based on combined attribute information such as number of birds or farms at district levels. Based on the criteria established for this study, the most-likely areas at higher risk for HPAI outbreak were located in Chungcheong, Jeolla, Gyeonggi, and Gyeongnam provinces, which are densely populated poultry regions considered major poultry-production areas that are located along bird migration sites. The proportion of areas at risk for HPAI occurrence ranged from 4.5% to 64.9%. For the worst criteria, all nine provinces, including Jeju Island, were found to be at risk of HPAI. The results of this study indicate that the number of poultry farms at risk for HPAI outbreaks is largely underestimated by current regulatory risk assessment procedures conducted for biosecurity authorization. The HPAI risk map generated in this study will enable easy use of information by policy makers to identify surveillance zones and employ targeted surveillance to reduce the impact of HPAI transmission.

Estimation of Landslide Risk based on Infinity Flow Direction (무한방향흐름기법을 이용한 산사태 위험도 평가)

  • Oh, Sewook;Lee, Giha;Bae, Wooseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.2
    • /
    • pp.5-18
    • /
    • 2019
  • In this study, it was conducted a broad-area landslide analysis for the entire area of Kyungsangbuk-do Province based on spatially-distributed wetness index and root reinforcement infinity slope stability theory. Specifically, digital map, soil map and forest map were used to extract topological and geological parameters, and to build spatially-distributed database at $10m{\times}10m$ resolution. Infinity flow direction method was used for rain catchment area to produce spatially-distributed wetness index. The safety level that indicates risk of a broad-area landslide was classified into four groups. The result showed that areas with a high estimated risk of a landslide coincided with areas that recently went through an actual landslide, including Bonghwa and Gimcheon, and unstable areas were clustered around mountainous areas. A comparison between the estimation result and the records of actual landslide showed that the analysis model is effective for estimating a risk of a broad-area landslide based on accumulation of reasonable parameters.

A Study on the Visualization of HNS Hazard Levels to Prevent Accidents at Sea in Real-Time

  • Jeong, Min-Gi;Lee, Moonjin;Lee, Eun-Bang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.3
    • /
    • pp.242-249
    • /
    • 2017
  • In order to develop an HNS safety management system to assess and visualize hazard levels via an automated method, we have conceptualized and configured a sample system. It is designed to quantify the risk of a vessel carrying HNS with a matrix method along navigational route and indicate hazards distribution with a contour map. The basic system which provides a visualized degree of hazards in real time has been introduced for the safe navigation of HNS ships. This is useful not only for decision making and circumstantial judgment but may also be utilized for HNS safety management with a risk base. Moreover, this system could be extended to address the navigational safety of marine traffic as well as of autonomous vessels in the near future if the sensors used are connected with IoT technology.

A Risk Analysis of Road Slopes Using GIS (GIS를 이용한 도로 사면의 위험성 분석)

  • Kim , Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.5
    • /
    • pp.117-127
    • /
    • 2004
  • A risk analysis on the cutting slope of roads near Cheongju area was carried out with the data from geological map, field investigation, and laboratory test and with the Geographic Information System. A risk analysis method on the cutting slope of road using the Geographic Information System was developed with the data from geological map, field investigation and laboratory tests. In the GIS, road factors which are safety factor, class of road, slake index, slope-protection works, and height of slope in the cutting slopes are classified into some ranks, and their weighting factors were taken into account. This method can be applied effectively to a road management.

Analysis of Infiltration Area using Prediction Model of Infiltration Risk based on Geospatial Information (지형공간정보 기반의 침투위험도 예측 모델을 이용한 최적침투지역 분석)

  • Shin, Nae-Ho;Oh, Myoung-Ho;Choe, Ho-Rim;Chung, Dong-Yoon;Lee, Yong-Woong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.199-205
    • /
    • 2009
  • A simple and effective analysis method is presented for predicting the best infiltration area. Based on geospatial information, numerical estimation barometer for degree of infiltration risk has been derived. The dominant geospatial features influencing infiltration risk have been found to be area altitude, degree of surface gradient, relative direction of surface gradient to the surveillance line, degree of surface gradient repetition, regional forest information. Each feature has been numerically expressed corresponding to the degree of infiltration risk of that area. Four different detection probability maps of infiltration risk for the surveillance area are drawn on the actual map with respect to the numerically expressed five dominant factors of infiltration risks. By combining the four detection probability maps, the complete picture of thr best infiltration area has been drawn. By using the map and the analytic method the effectiveness of surveillance operation can be improved.

Assessment of Drought Risk in Korea: Focused on Data-based Drought Risk Map (우리나라 가뭄 위험도 평가: 자료기반 가뭄 위험도 지도 작성을 중심으로)

  • Park, Jong Yong;Yoo, Ji Young;Lee, Minwoo;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.4B
    • /
    • pp.203-211
    • /
    • 2012
  • Once drought occurs, it results in the extensive affected area and considerable socio-economic damages. Thus, it is necessary to assess drought risk and to prepare its counterplans. In this study, using various observation data on meteorological and socio-economical factors, drought risk was evaluated in South Korea. To quantify drought risk, Drought Hazard Index (DHI) was calculated based on the occurrence probability of drought, and Drought Vulnerability Index (DVI) was computed to reflect socio-economic consequences of drought. Drought Risk Index (DRI) was finally suggested by combining DHI and DVI. These indices were used to assess drought risk for different administrative districts of South Korea. The overall results show that the highest drought risk area was Jeolla Province where agricultural practice is concentrated. The drought risk map proposed in this study reflects regional characteristics, thus it could be utilized as a basic data for the establishment of drought preventive measures.

Probabilistic Prediction of the Risk of Sexual Crimes Using Weight of Evidence (Weight of Evidence를 활용한 성폭력 범죄 위험의 확률적 예측)

  • KIM, Bo-Eun;KIM, Young-Hoon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.4
    • /
    • pp.72-85
    • /
    • 2019
  • The goal of this study is to predict sexual violence crimes, which is an routine risk. The study used to the Weight of Evidence on sexual violence crimes that occurred in partly Cheongju-si for five years from 2011 to 2015. The results are as follows. First, application and analysis of the Weight of Evidence that considers the weight of evidence characteristics showed 8 out of total 26 evidences that are used for a sexual violence crimes risk prediction. The evidences were residential area, date of use permission for building, individual housing price, floor area ratio, number of basement floor, lot area, security light and recreational facility; which satisfied credibility in the process of calculating weight. Second, The weight calculated 8 evidences were combined to create the prediction map in the end. The map showed that 16.5% of sexual violence crimes probability occurs in 0.3㎢, which is 3.3% of the map. The area of probability of 34.5% is 1.8㎢, which is 19.0% of the map and the area of probability of 75.5% is 2.0㎢, which is 20.7% of the map. This study derived the probability of occurrence of sexual violence crime risk and environmental factors or conditions that could reduce it. Such results could be used as basic data for devising preemptive measures to minimize sexual violence, such as police activities to prevent crimes.

Development of a Prototype for GIS-based Flood Risk Map Management System (GIS를 이용한 홍수위험지도 관리시스템 프로토타입 개발에 관한 연구)

  • Kim, Kye-Hyun;Yoon, Chun-Joo;Lee, Sang-Il
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.4 s.129
    • /
    • pp.359-366
    • /
    • 2002
  • The damages from the natural disasters, especially from the floods, have been increasing. Therefore, it is imperative to establish a BMP to diminish the damages from the floods and to enhance the welfare of the nation. Developed countries have been generating and utilizing flood risk maps to raise the alertness of the residents, and thereby achieving efficient flood management. The major objectives of this research were to develop a prototype management system for flood risk map to forecast the boundaries oi the inundation and to plot them through the integration of geographic and hydrologic database. For more efficient system development, the user requirement analysis was made. The GIS database design was done based on the results from the research work of river information standardization. A GIS database for the study area was built by using topographic information to support the hydrologic modeling. The developed prototype include several modules; river information edition module, map plotting module, and hydrologic modeling support module. Each module enabled the user to edit graphic and attribute data, to analyze and to represent the modeling results visually. Subjects such as utilization of the system and suggestions for future development were discussed.

Hail Risk Map based on Multidisciplinary Data Fusion (다학제적 데이터 융합에 기초한 우박위험지도)

  • Suhyun, Kim;Seung-Jae, Lee;Kyo-Moon, Shim
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.4
    • /
    • pp.234-243
    • /
    • 2022
  • In Korea, hail damage occurs every year, and in the case of agriculture, it causes severe field crop and cultivation facility losses. Therefore, it is necessary to develop a hail information service system customized for Korea's primary production and crop-growing areas to minimize hail damage. However, the observation of hail is relatively more difficult than that of other meteorological variables, and the available data are also spatially and temporally variable. A hail information service system was developed to understand the temporal and spatial distribution of hail occurrence. As part of this, a hail observation database was established that integrated the observation data from Korea Meteorological Administration with the information from newspaper reports. Furthermore, a hail risk map was produced based on this database. The risk map presented the nationwide distribution and characteristics of hail showers from 1970 to 2018, and the northeastern region of South Korea was found to be relatively dangerous. Overall, hail occurred nationwide, especially in the northeast and some inland areas (Gangwon, Gyeongbuk, and Chungbuk province) and in winter, mainly on the north coast and some inland areas as graupel (small and soft hail). Analyzing the time of day, frequency, and hailstone size of hail shower occurrences by region revealed that the incidence of large hail stones (e.g., 10 cm at Damyang-gun) has increased in recent years and that showers occurred mainly in the afternoon when the updraft was well formed. By integrating multidisciplinary data, the temporal and spatial gap in hail data could be supplemented. The hail risk map produced in this study will be helpful for the selection of suitable crops and growth management strategies under the changing climate conditions.

Sensitivity Analysis of Uncertainty Sources in Flood Inundation Mapping by using the First Order Approximation Method (FOA를 이용한 홍수범람도 구축에서 불확실성 요소의 민감도 분석)

  • Jung, Younghun;Park, Jeryang;Yeo, Kyu Dong;Lee, Seung Oh
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.6
    • /
    • pp.2293-2302
    • /
    • 2013
  • Flood inundation map has been used as a fundamental information in flood risk management. However, there are various sources of uncertainty in flood inundation mapping, which can be another risk in preventing damage from flood. Therefore, it is necessary to remove or reduce uncertainty sources to improve the accuracy of flood inundation maps. However, the entire removal of uncertainty source may be impossible and inefficient due to limitations of knowledge and finance. Sensitivity analysis of uncertainty sources allows an efficient flood risk management by considering various conditions in flood inundation mapping because an uncertainty source under different conditions may propagate in different ways. The objectives of this study are (1) to perform sensitivity analysis of uncertainty sources by different conditions on flood inundation map using the FOA method and (2) to find a major contributor to a propagated uncertainty in the flood inundation map in Flatrock at Columbus, U.S.A. Result of this study illustrates that an uncertainty in a variable is differently propagated to flood inundation map by combination with other uncertainty sources. Moreover, elevation error was found to be the most sensitive to uncertainty in the flood inundation map of the study reach.