• Title/Summary/Keyword: Rising Time

Search Result 985, Processing Time 0.025 seconds

Effect of Press Temperature and Time on Physical Properties of Larch Particleboard (압체온도(壓締温度)와 시간(時間)이 낙엽송(落葉松) 파티클 보오드의 물리적(物理的) 특성(特性)에 미치는 영향(影響))

  • Lee, Phil Woo;Chung, Gyun
    • Journal of Korean Society of Forest Science
    • /
    • v.63 no.1
    • /
    • pp.12-20
    • /
    • 1984
  • This research was performed to estimate the properties of particleboard based on the press time and temperature which was made of chip of larch that grows in Korea. The results in this study were as follows: 1) Even though the chips, 1:1-35 ratio between length and thickness, are relatively bad condition, the surface smoothness that can easily spread the adhesive evenly and thoroughly and bonding ability of chips can give proper physical properties. 2) It shows more mechanical properties at the press time of 10 min. in MOR (Modulus of Rupture), MOE (Modulus of Elasticity) and SHA (Screw Holding Ability). 3) It is not significant according to the press time 20 min. in MOR, IBS (Internal Bonding Strength) and SHA, for the reciprocal actions between the accelerating aging effect of chip and the softening effect of adhesion are occured. 4) IBS is rising according to the increasing temp at the press time of 10 min. Because it needs to transfer the plate heat to make the proper hardening temp. In the layer. 5) The heat treatment effects have greatly influenced the stahility of dimension by falling the absorption, anisotropy and inhomegenity. As a result of these the values of thickness and linear expansion ratio were respectively dropped by the increase of press temp and the time and so did absorption.

  • PDF

PERIODIC AND CORRELATION ANALYSES BETWEEN WATER TEMPERATURE AND AIR TEMPERATURE IN THE KOREAN WATERS (韓國 沿岸 水溫 및 氣溫의 週期分析과 相關分析)

  • Kim, Bok-Kee
    • 한국해양학회지
    • /
    • v.18 no.1
    • /
    • pp.55-63
    • /
    • 1983
  • The study on the periodic and correlation analysis between water temperature and air temperature has beenconducted by oceanographic data obtained from 1923 to 1979 (For 16-51 years) in 6 ststions in the Korean Waters. The periodic and correlation analyses has been examined by method of he Schuster's and the quadratic formula of least squares method, respectively. The results pbtained from the study are as follows; 1. Periodic analysis 1) The yearly difference between max. and mini. fo surface water temperature was 12.77-17.99$^{\circ}C$ (computed value : 11.67-16.64$^{\circ}C$) in offshore waters, and was 15.72-26.33$^{\circ}C$ (computed value : 15.13-25.29$^{\circ}C$) in inshore waters, and that of air temperature was 21.71-28.60$^{\circ}C$ (computed value : 10.50-27.22$^{\circ}C$). 2) The yearly mean of water temperature by station was 11.25-18.78$^{\circ}C$, and that of air temperature was 11.39-16.16$^{\circ}C$. 3) The annual compnent amplitrde of water temperature was 5.72-12.54$^{\circ}C$, and that of air temperature was 10.04-13.49$^{\circ}C$. 4) The semi-annual component amplitude of water temperature was 0.83-1.30$^{\circ}C$, and that of air temperature was 0.72-1.26$^{\circ}C$. 5) The annual component phase of water temperature was 215-228$^{\circ}C$ (max. temperature shall be in the first and in the middle ten days of August) in inshore waters and 138-244$^{\circ}C$ (max. temperature shall be in the first and in the middle ten days of August) in offshore waters, and that of air temperarture was 212-221$^{\circ}C$ (max. temperature shall be in the first and in the middle ten days of July and in the first tin days of August). 6) The semi-annual component phase of water temperature was 87-110$^{\circ}C$ in offshore waters, and 167-212$^{\circ}C$ in inshore waters, and that of air temperature was 156-189$^{\circ}C$. 2. Correlation analyses of water temperature and air temperature before one month. 1) When the water temperature is in rising time, the quadratic constant of correlation formual was the gradual inreasing type ( constant; 0.010-0.026) in offshore waters, and the gradual decreasing or proportional type (constant; -0.020-0.001) in inshore waters. 2) when the water temperature is in descending time, the quadratic constant of correlation formula was the gradual increasing type (constant: 0.012-0.021) 3) the determination coefficient was 0.964-0.992 at rising time and 0.982-0.999 at descending time of water temperature.

  • PDF

Time Series Analysis with ALOS PALSAR images and GPS data: Detection of Ground Subsidence in the Mokpo Area using the SBAS Algorithm (ALOS PALSAR 영상과 GPS를 이용한 시계열 분석: SBAS 알고리즘을 적용한 목포시 일원의 지반침하 연구)

  • Kim, So-Yeon;Bae, Tae-Suk;Kim, Sang-Wan
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.5
    • /
    • pp.375-384
    • /
    • 2013
  • Most of regions within the city of Mokpo, located on the southwest coast of the Korean Peninsula, are subjected to significant subsidence because about 70% of the city is land reclaimed from the sea (Kim et al., 2005). In this study, we aimed to estimate the rate of subsidence over Mokpo by using PALSAR L-band dataset from 2006 to 2010. Time series analysis was performed as well using GPS surveying data from 2010 to 2012. Results from these two independent datasets are then compared and analyzed over the common period of time. GPS data processing provides the results of seasonal variation on the surface, that is, via repeatedly rising and falling in association with the periodic cycle. Therefore, a time series analysis was performed to calculate the rate of ground subsidence. The deformation rates calculated for the same point are 3.89cm/yr and 2.65cm/yr from the GPS data and SAR data, respectively. SAR and GPS data processing results show a very similar pattern in terms of magnitude of annual subsidence. Thus, if the two datasets are integrated together, new modeling on ground subsidence is feasible. Lastly, subsidence was detected in a landfill area in the city of Mokpo, which has been continuously occurring through 2012.

Effect of Ingestion of Guarana on the Change in Blood Energy Substrate During Exercise for a Long Time (과라나 섭취가 장시간 운동 시 혈중 에너지 기질 변화에 미치는 영향)

  • Nam, Sang-Nam;Lee, Kyeo-Ra
    • Journal of Digital Convergence
    • /
    • v.12 no.12
    • /
    • pp.581-588
    • /
    • 2014
  • The purpose of this study aims guarana ingestion to possibly be Ergogenic Aids(EA) for elite male athletes who do long time exercises. Participators who play long distance belong to H-university. They are measured HRmax by polar and treadmill, and they do run on the treadmill for 60 minutes with HRmax 70%. Participators ingest 200ml guarana and water for 5 times. They were drawn blood for 3 time such as before 30 minutes, after finish, and after 30 minutes later. Data processing was repeated of the measuring, two way repeated ANOVA, according to guarana ingestion, water ingestion, and treatment time. The result of this study identifies that guarana ingestion is more positive effect with glucose, Free fatty acid, and lactic acid than water. Hence, guarana ingestion is including function of EA to increase reserving energy on the body for rising kinetic ability.

Improved Vapor Recognition in Electronic Nose (E-Nose) System by Using the Time-Profile of Sensor Array Response (센서 응답의 Time-Profile 을 이용한 전자 후각 (E-Nose) 시스템의 Vapor 인식 성능 향상)

  • Yoon Seok, Yang
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.5
    • /
    • pp.329-334
    • /
    • 2004
  • The electronic nose (E-nose) recently finds its applications in medical diagnosis, specifically on detection of diabetes, pulmonary or gastrointestinal problem, or infections by examining odors in the breath or tissues with its odor characterizing ability. The odor recognition performance of E-nose can be improved by manipulating the sensor array responses of vapors in time-profile forms. The different chemical interactions between the sensor materials and the volatile organic compounds (VOC's) leave unique marks in the signal profiles giving more information than collection of the conventional piecemal features, i.e., maximum sensitivity, signal slopes, rising time. In this study, to use them in vapor recognition task conveniently, a novel time-profile method was proposed, which is adopted from digital image pattern matching. The degrees of matching between 8 different vapors were evaluated by using the proposed method. The test vapors are measured by the silicon-based gas sensor array with 16 CB-polymer composites installed in membrane structure. The results by the proposed method showed clear discrimination of vapor species than by the conventional method.

Comparison of SqueeSAR Analysis Method And Level Surveying for Subsidence Monitoring at Landfill Site (매립지 지반침하 모니터링을 위한 SqueeSAR 해석법과 수준측량의 비교)

  • Kim, Dal-Joo;Lee, Yong-Chang
    • Journal of Cadastre & Land InformatiX
    • /
    • v.48 no.2
    • /
    • pp.137-151
    • /
    • 2018
  • Recently, National interest has been rising due to earthquakes in Gyeongju and Pohang, disasters caused by landslides, landslides, and sinkholes around construction sites, and damage caused by disasters. SAR is able to detect ground displacement in mm for wide area, collect data through satellite, predict timeliness of crustal change by time series analysis, and reduce disaster and disaster damage. The purpose of this study is to investigate the latest SAR interference analysis technique (SqueeSAR analysis technique) of Sentinel-1A satellite (SAR sensor) of European ESA for about 3 years by selecting the 1st landfill site in the metropolitan area in Incheon, The settlement amount was calculated in a time series. Especially, in order to examine the accuracy of the subsidence and subsidence tendency by the SqueeSAR analysis method, the ground level survey was compared and analyzed for the first time in Korea. Also, the tendency of the subsidence trend was predicted by analyzing the time series and correlation trend of the subsidence for three years. Through this study, it is expected that disaster prevention and disaster prevention such as sinkhole and landslide can be utilized from time series monitoring of crustal variation of the land.

Multi-scale Correlation Analysis between Sea Level Anomaly and Climate Index through Wavelet Approach (웨이블릿 접근을 통한 해수면 높이와 기후 지수간의 다중 스케일 상관 관계 분석)

  • Hwang, Do-Hyun;Jung, Hahn Chul
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.587-596
    • /
    • 2022
  • Sea levels are rising as a result of climate change, and low-lying areas along the coast are at risk of flooding. Therefore, we tried to investigate the relationship between sea level change and climate indices using satellite altimeter data (Topex/Poseidon, Jason-1/2/3) and southern oscillation index (SOI) and the Pacific decadal oscillation (PDO) data. If time domain data were converted to frequency domain, the original data can be analyzed in terms of the periodic components. Fourier transform and Wavelet transform are representative periodic analysis methods. Fourier transform can provide only the periodic signals, whereas wavelet transform can obtain both the periodic signals and their corresponding time location. The cross-wavelet transformation and the wavelet coherence are ideal for analyzing the common periods, correlation and phase difference for two time domain datasets. Our cross-wavelet transform analysis shows that two climate indices (SOI, PDO) and sea level height was a significant in 1-year period. PDO and sea level height were anti-phase. Also, our wavelet coherence analysis reveals when sea level height and climate indices were correlated in short (less than one year) and long periods, which did not appear in the cross wavelet transform. The two wavelet analyses provide the frequency domains of two different time domain datasets but also characterize the periodic components and relative phase difference. Therefore, our research results demonstrates that the wavelet analyses are useful to analyze the periodic component of climatic data and monitor the various oceanic phenomena that are difficult to find in time series analysis.

Dynamic Response of Plate Structure Subject to the Characteristics of Explosion Load Profiles - Part A: Analysis for the Explosion Load Characteristics and the Effect of Explosion Loading Rate on Structural Response - (폭발하중 이력 특성에 따른 판 구조물의 동적응답 평가 - Part A: 폭발하중 특징 및 재하속도의 영향 분석 -)

  • Kang, Ki-Yeob;Choi, Kwang-Ho;Ryu, YongHee;Choi, JaeWoong;Lee, Jae-Myung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.2
    • /
    • pp.187-195
    • /
    • 2015
  • The gas explosions in offshore installations are known to be very severe according to its geometry and environmental conditions such as leak locations and wind directions, and a dynamic response of structures due to blast loads depends on the load profile. Therefore, a parametric study has to be conducted to investigate the effects of the dynamic response of structural members subjected to various types of load shapes. To do so, a series of CFD analyses was performed using a full-scale FPSO topside model including detail parts of pipes and equipments, and the time history data of the blast loads at monitor points and panels were obtained by the analyses. In this paper, we focus on a structural dynamic response subjected to blast loads changing the magnitude of positive/negative phase pressure and time duration. From the results of linear/nonlinear transient analyses using single degree of freedom(SDOF) and multi-degree-of freedom(MDOF) systems, it was observed that dynamic responses of structures were significantly influenced by the magnitude of positive and negative phase pressures and negative time duration.

Real-time Flood Stage Forecasting of Tributary Junctions in Namhan River (남한강 지류 합류부의 실시간 홍수위 예측)

  • Kim, Sang Ho;Hyun, Jin Sub;Kim, Ji-Sung;Jun, Kyung Soo
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.6
    • /
    • pp.561-572
    • /
    • 2014
  • The backwater effect at a tributary junction increases the risk of flood damage such as inundation and levee overflow. In particular, the rapid increase in water level may cause injury to persons. The purpose of this research is the development of the real-time flood forecasting technique as a part of the non-structural flood damage reduction measures. To this end, the factors causing a water level rising at a junction were examined, and the empirical formula for predicting flood level at a junction was developed using the calculated discharge and water level data from the well-constructed hydraulic model. The water level predictions show that average absolute error is about 0.2~0.3m with the maximum error of 1.0m and peak time can be captured prior to 0~5 hr. From the results of this study, the real-time flood forecasting system of a tributary junction can be easily constructed, and this system is expected to be utilized for reduction of flood inundation damage.

Analysis of Lake Water Temperature and Seasonal Stratification in the Han River System from Time-Series of Landsat Images (Landsat 시계열 영상을 이용한 한강 수계 호수 수온과 계절적 성충 현상 분석)

  • Han, Hyang-Sun;Lee, Hoon-Yol
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.4
    • /
    • pp.253-271
    • /
    • 2005
  • We have analyzed surface water temperature and seasonal stratification of lakes in the Han river system using time-series Landsat images and in situ measurement data. Using NASA equation, at-satellite temperature is derived from 29 Landsat-5 TM and Landsat-7 ETM+ images obtained from 1994 to 2004, and was compared with in situ surface temperature on river-type dam lakes such as Paro, Chuncheon, Euiam, Chongpyong, Paldang, and with 10m-depth temperature on lake-type dam lake Soyang. Although the in situ temperature at the time of satellite data acquisition was interpolated from monthly measurements, the number of images with standard deviation of temperature difference (at-satellite temperature - in situ interpolated temperature) less than $2^{\circ}C$ was 24 on which a novel statistical atmospheric correction could be applied. The correlation coefficient at Lake Soyang was 0.915 (0.950 after correction) and 0.951-0.980 (0.979-0.997 after correction) at other lakes. This high correlation implies that there exist a mixed layer in the shallow river-like dam lakes due to physical mixing from continuous influx and efflux, and the daily and hourly temperature change is not fluctuating. At Lake Soyang, an anomalous temperature difference was observed from April to July where at-satellite temperature is $3-5^{\circ}C$ higher than in situ interpolated temperature. Located in the uppermost part of the Han river system and its influx is governed only by natural precipitation, Lake Soyang develops stratification during this time with rising sun elevation and no physical mixture from influx in this relatively dry season of the year.